Feasibility study for a nanosatellite-based instrument for in-situ measurements of radio noise
The radio environment on the earth is heavily affected by manmade sources such as radio transmissions, radars, and the like. The effect is particularly strong at MF frequencies and below, since the signals can propagate large distances via ionospheric bounce. Terrestrial magnetometer measurements have long been used to predict the Kp index, which is related to radio transmission at these ranges. Space weather measurements and models can also predict propagation of MF signals on the ground.
Dust environment of an airless object: A phase space study with kinetic models
Abstract The study of dust above the lunar surface is important for both science and technology. Dust particles are electrically charged due to impact of the solar radiation and the solar wind plasma and, therefore, they affect the plasma above the lunar surface. Dust is also a health hazard for crewed missions because micron and sub-micron sized dust particles can be toxic and harmful to the human body. Dust also causes malfunctions in mechanical devices and is therefore a risk for spacecraft and instruments on the lunar surface. Properties of dust particles above the lunar surface are not fully known. However, it can be stated that their large surface area to volume ratio due to their irr…