0000000000790048

AUTHOR

F. Moretti

showing 3 related works from this author

COVID-19: opinions and behavior of Italian general population during the first epidemic phase

2022

Background and aim: On January 9, 2020, the World Health Organization (WHO) declared that Chinese health authorities had identified a new coronavirus strain never before isolated in humans, the 2019-nCoV later redefined SARS-CoV-2, that still today represent a public health problem. The present survey started on 10 February 2020 with the aim of a) assessing the risk perception in healthcare workers and young students, following the evolution of attitudes, perception and knowledge over time, b) provide useful information to the general population during survey. Results: A study sample consisting of 4116 Italian in-dividuals of both sexes was enrolled. High levels of risk perception, low perc…

risk perception.MaleknowledgeSARS-CoV-2attitude; COVID-19; knowledge; perception; population; risk perceptionpopulationCOVID-19perceptionattitude COVID-19 knowledge perception population risk perceptionAttituderisk perceptionCOVID-19; risk perception; knowledge; attitude; perception; populationattitudeHumansFemalePublic HealthEpidemicsHuman
researchProduct

Theia: an advanced optical neutrino detector

2020

The European physical journal. C, Particles and fields 80(5), 416 (2020). doi:10.1140/epjc/s10052-020-7977-8

Physics - Instrumentation and DetectorsPhysics and Astronomy (miscellaneous)neutrino detectors liquid scintillators cherenkovPhysics::Instrumentation and DetectorsSolar neutrinoAstrophysics::High Energy Astrophysical Phenomenaexperimental physicstutkimuslaitteetFOS: Physical scienceslcsh:Astrophysicshiukkasfysiikkanucl-ex01 natural sciencesAtomic530High Energy Physics - ExperimentNuclear physicsHigh Energy Physics - Experiment (hep-ex)Particle and Plasma PhysicsDouble beta decay0103 physical scienceslcsh:QB460-466Deep Underground Neutrino Experimentlcsh:Nuclear and particle physics. Atomic energy. RadioactivityNuclearddc:530Nuclear Experiment (nucl-ex)010306 general physicsEngineering (miscellaneous)physics.ins-detNuclear ExperimentCherenkov radiationPhysicsScintillationQuantum Physics010308 nuclear & particles physicshep-exDetectorneutriinotMolecularInstrumentation and Detectors (physics.ins-det)Nuclear & Particles PhysicsNeutrino detectorilmaisimetlcsh:QC770-798High Energy Physics::ExperimentNeutrino
researchProduct

Rare-earth doped silica optical fibres for ionizing radiation detection

2016

Scintillating silica optical fibre sensors have shown interesting results for ionizing radiation monitoring and therefore can be useful for dosimetry applications in medical field. In fact, they enable a remote, punctual and real-time dose assessment (Mones et al., 2008). In addition, the high radiation hardness that characterizes silica optical fibers, makes these systems promising for radiation detection in high energy physics experiments (Chiodini et al., 2014). This work aims to review the recent progresses in the development and characterization of rare-earth doped silica fibres. The radioluminescent and dosimetric properties of Ce, Eu, Yb and Pr-doped silica matrices are described and…

Settore FIS/01 - Fisica SperimentaleRare-earth silica optical fibres ionizing radiation detectionSettore FIS/03 - Fisica Della MateriaSettore FIS/07 - Fisica Applicata(Beni Culturali Ambientali Biol.e Medicin)
researchProduct