0000000000790200

AUTHOR

Jorge Casanova

Experimentally Realizing Efficient Quantum Control with Reinforcement Learning

Robust and high-precision quantum control is crucial but challenging for scalable quantum computation and quantum information processing. Traditional adiabatic control suffers severe limitations on gate performance imposed by environmentally induced noise because of a quantum system's limited coherence time. In this work, we experimentally demonstrate an alternative approach {to quantum control} based on deep reinforcement learning (DRL) on a trapped $^{171}\mathrm{Yb}^{+}$ ion. In particular, we find that DRL leads to fast and robust {digital quantum operations with running time bounded by shortcuts to adiabaticity} (STA). Besides, we demonstrate that DRL's robustness against both Rabi and…

research product

Breaking adiabatic quantum control with deep learning

In the era of digital quantum computing, optimal digitized pulses are requisite for efficient quantum control. This goal is translated into dynamic programming, in which a deep reinforcement learning (DRL) agent is gifted. As a reference, shortcuts to adiabaticity (STA) provide analytical approaches to adiabatic speed up by pulse control. Here, we select single-component control of qubits, resembling the ubiquitous two-level Landau-Zener problem for gate operation. We aim at obtaining fast and robust digital pulses by combining STA and DRL algorithm. In particular, we find that DRL leads to robust digital quantum control with operation time bounded by quantum speed limits dictated by STA. I…

research product