0000000000790203

AUTHOR

Jian Jin

showing 2 related works from this author

Epigenetic siRNA and Chemical Screens Identify SETD8 Inhibition as a Therapeutic Strategy for p53 Activation in High-Risk Neuroblastoma

2017

Given the paucity of druggable mutations in high-risk neuroblastoma (NB), we undertook chromatin-focused small interfering RNA and chemical screens to uncover epigenetic regulators critical for the differentiation block in high-risk NB. High-content Opera imaging identified 53 genes whose loss of expression led to a decrease in NB cell proliferation and 16 also induced differentiation. From these, the secondary chemical screen identified SETD8, the H4K20me1 methyltransferase, as a druggable NB target. Functional studies revealed that SETD8 ablation rescued the pro-apoptotic and cell-cycle arrest functions of p53 by decreasing p53K382me1, leading to activation of the p53 canonical pathway. I…

p530301 basic medicineCancer ResearchSmall interfering RNAMethyltransferaseCellular differentiationDruggabilityBiologyArticleEpigenesis GeneticNeuroblastoma03 medical and health sciences0302 clinical medicineNeuroblastomamedicineHumansEpigeneticsRNA Small InterferingGeneCell ProliferationsiRNA screenCell growthQuinazolineCell DifferentiationdifferentiationHistone-Lysine N-Methyltransferasemedicine.diseaseSETD8030104 developmental biologyOncology030220 oncology & carcinogenesisQuinazolinesCancer researchdifferentiation; epigenetics; neuroblastoma; p53; SETD8; siRNA screen; Oncology; Cell Biology; Cancer ResearchTumor Suppressor Protein p53epigeneticHuman
researchProduct

Topoisomerase 1 inhibition suppresses inflammatory genes and protects from death by inflammation

2015

Unwinding DNA and unleasing inflammation Fighting infections often comes with collateral damage, which sometimes can be deadly. For instance, in septic shock, the overwhelming release of inflammatory mediators drives multi-organ failure. Rialdi et al. now report a potential new therapeutic target for controlling excessive inflammation: the DNA unwinding enzyme topoisomerase I (Top1) (see the Perspective by Pope and Medzhitov). Upon infection, Top1 specifically localizes to the promoters of pathogen-induced genes and promotes their transcription by helping to recruit RNA polymerase II. Pharmacological inhibition of Top1 in a therapeutic setting increased survival in several mouse models of s…

0301 basic medicineTranscription GeneticType IInbred C57BLmedicine.disease_causeSendai virusMicePiperidinesTranscription (biology)Influenza A virusInnate2.1 Biological and endogenous factorsPositive Transcriptional Elongation Factor BAetiologyMultidisciplinaryAzepinesStaphylococcal InfectionsEbolavirusInfectious DiseasesDNA Topoisomerases Type IInfluenza A virusEbolaHost-Pathogen InteractionsPneumonia & InfluenzaRNA Polymerase IImedicine.symptomInfectionTranscriptionStaphylococcus aureusGeneral Science & TechnologyInflammationBiologyVaccine Related03 medical and health sciencesImmune systemGeneticImmunityBiodefenseGeneticsmedicineAnimalsHumansGeneFlavonoidsInflammationInnate immune systemPreventionHEK 293 cellsImmunityInterferon-betaHemorrhagic Fever EbolaTriazolesImmunity InnateMice Inbred C57BLEmerging Infectious DiseasesGood Health and Well BeingHEK293 Cells030104 developmental biologyGene Expression RegulationImmunologyCancer researchHemorrhagic FeverCamptothecinTopoisomerase I InhibitorsTopotecanDNA TopoisomerasesScience
researchProduct