0000000000790376
AUTHOR
D. Velten
Interactions between cells and titanium surfaces.
The interaction between cells and implant materials is determined by the surface structure and/or surface composition of the material. In the past years, titanium and titanium alloys have proved their superiority over other implant materials in many clinical applications. This predominant behaviour is caused by a dense passive oxide layer which forms within milliseconds in oxidizing media. Titanium dioxide layers of 100 nm thickness were produced on the surface of cp-titanium grade 2, and on an experimental alloy of high vanadium content (Ti1.5Al25V) as a harmful control. The layers were produced by thermal and anodic oxidation and by coating by means of the sol-gel process. The resulting o…
XPS analysis of sol-gel-generated mixed-oxide layers for biomedical application
The excellent biocompatibility of titanium and its alloys is associated with the properties of their dense TiO2 layer on the surface. The adsorption of proteins of the body fluid to implant surfaces depends on the properties of the surface oxide layer, especially the electronic structure. Therefore, tailoring of the oxide layer is a method for influencing protein adsorption. In this study, titanium platelets are coated by the sol–gel process with mixed oxides containing the biocompatible elements Ti, Nb, Zr and Ta. In order to verify the composition of the produced oxide layer, which can differ from the adjusted precursor composition in the sol because of different reactivities of the precu…