0000000000791044

AUTHOR

M. K. Köhler

Freeze-out radii extracted from three-pion cumulants in pp, p–Pb and Pb–Pb collisions at the LHC

In high-energy collisions, the spatio-temporal size of the particle production region can be measured using the Bose-Einstein correlations of identical bosons at low relative momentum. The source radii are typically extracted using two-pion correlations, and characterize the system at the last stage of interaction, called kinetic freeze-out. In low-multiplicity collisions, unlike in high-multiplicity collisions, two-pion correlations are substantially altered by background correlations, e.g. mini-jets. Such correlations can be suppressed using three-pion cumulant correlations. We present the first measurements of the size of the system at freeze-out extracted from three-pion cumulant correl…

research product

The ATLAS Data Acquisition and High Level Trigger system

Journal of Instrumentation 11(06), P06008 (2016). doi:10.1088/1748-0221/11/06/P06008

research product

Dielectron production in proton-proton and proton-lead collisions at √sNN=5.02TeV

The first measurements of dielectron production at midrapidity (|ηe| < 0.8) in proton–proton and proton–lead collisions at √sNN = 5.02 TeV at the LHC are presented. The dielectron cross section is measured with the ALICE detector as a function of the invariant mass mee and the pair transverse momentum pT, ee in the ranges mee < 3.5 GeV/c2 and pT, ee < 8 GeV/c, in both collision systems. In proton–proton collisions, the charm and beauty cross sections are determined at midrapidity from a fit to the data with two different event generators. This complements the existing dielectron measurements performed at √s = 7 and 13 TeV. The slope of the √s dependence of the three measurements is…

research product

Measurement of pion, kaon and proton production in proton–proton collisions at \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sqrt{s} = 7$$\end{document}s=7 TeV

The measurement of primary \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pi ^{\pm }$$\end{document}π±, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K^{\pm }$$\end{document}K±, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrs…

research product

Measurement of quarkonium production at forward rapidity in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf {pp}$$\end{document}pp collisions at \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf {\sqrt{s}=7}~$$\end{document}s=7TeV

The inclusive production cross sections at forward rapidity of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathrm{J}/\psi }$$\end{document}J/ψ, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\psi (\mathrm{2S})}$$\end{document}ψ(2S), \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} …

research product

Energy dependence of the transverse momentum distributions of charged particles in pp collisions measured by ALICE

Differential cross sections of charged particles in inelastic pp collisions as a function of $p_{\rm T}$ have been measured at $\sqrt{s}=$ 0.9, 2.76 and 7 TeV at the LHC. The $p_{\rm T}$ spectra are compared to NLO-pQCD calculations. Though the differential cross section for an individual $\sqrt{s}$ cannot be described by NLO-pQCD, the relative increase of cross section with $\sqrt{s}$ is in agreement with NLO-pQCD. Based on these measurements and observations, procedures are discussed to construct pp reference spectra at $\sqrt{s} =$ 2.76 and 5.02 TeV up to $p_{\rm T}$ = 50 GeV/$c$ as required for the calculation of the nuclear modification factor in nucleus-nucleus and proton-nucleus coll…

research product

Measurement of visible cross sections in proton-lead collisions at √sNN= 5.02 TeV in van der Meer scans with the ALICE detector

In 2013, the Large Hadron Collider provided proton-lead and lead-proton collisions at the center-of-mass energy per nucleon pair $\sqrt{s_{\rm{NN}}}=5.02$ TeV. Van der Meer scans were performed for both configurations of colliding beams, and the cross section was measured for two reference processes, based on particle detection by the T0 and V0 detectors, with pseudo-rapidity coverage $4.6<\eta< 4.9$, $-3.3<\eta<-3.0$ and $2.8<\eta< 5.1$, $-3.7<\eta<-1.7$, respectively. Given the asymmetric detector acceptance, the cross section was measured separately for the two configurations. The measured visible cross sections are used to calculate the integrated luminosity of the proton-lead and lead-…

research product