0000000000791194

AUTHOR

John H. Hartwig

Molecular basis of filamin a-filGAP interaction and its impairment in congenital disorders associated with filamin a mutations

Background Mutations in filamin A (FLNa), an essential cytoskeletal protein with multiple binding partners, cause developmental anomalies in humans. Methodology/Principal Findings We determined the structure of the 23rd Ig repeat of FLNa (IgFLNa23) that interacts with FilGAP, a Rac-specific GTPase-activating protein and regulator of cell polarity and movement, and the effect of the three disease-related mutations on this interaction. A combination of NMR structural analysis and in silico modeling revealed the structural interface details between the C and D β-strands of the IgFLNa23 and the C-terminal 32 residues of FilGAP. Mutagenesis of the predicted key interface residues confirmed the b…

research product

Differential roles of cAMP and cGMP in megakaryocyte maturation and platelet biogenesis

The cyclic nucleotides cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP) regulate the activity of protein kinase A (PKA) and protein kinase G (PKG), respectively. This process helps maintain circulating platelets in a resting state. Here we studied the role of cAMP and cGMP in the regulation of megakaryocyte (MK) differentiation and platelet formation. Cultured, platelet-producing MKs were differentiated from fetal livers harvested from 13.5 days postcoital mouse embryos. MK development was accompanied by a dramatic increase in cAMP production and expression of soluble guanylate cyclase, PKG, and PKA as well as their downstream targets vasodilator-stimulated ph…

research product

Cystic Fibrosis Transmembrane Conductance Regulator Interacts with Multiple Immunoglobulin Domains of Filamin A

Mutations of the chloride channel cystic fibrosis transmembrane conductance regulator (CFTR) that impair its apical localization and function cause cystic fibrosis. A previous report has shown that filamin A (FLNa), an actin-cross-linking and -scaffolding protein, interacts directly with the cytoplasmic N terminus of CFTR and that this interaction is necessary for stability and confinement of the channel to apical membranes. Here, we report that the CFTR N terminus has sequence similarity to known FLNa-binding partner-binding sites. FLNa has 24 Ig (IgFLNa) repeats, and a CFTR peptide pulled down repeats 9, 12, 17, 19, 21, and 23, which share sequence similarity yet differ from the other FLN…

research product