Optical diagnostic of temperature in rocket engines by coherent Raman techniques
Abstract This article reviews the study of Raman line shapes of molecular species involved in reactive media, such flames or engines, at high temperature and high pressure. This study is of interest from a fundamental as well as from a practical point of view with regards to the CARS temperature diagnostic of GH2–LOX combustion systems. We will particularly draw attention to recent investigations by means of Stimulated Raman Spectroscopy (SRS) in H2–H2O mixtures at temperature up to 1800 K. Whereas H2–X systems usually exhibit large inhomogeneous effects, due to the speed dependence of the collisional parameters, the absence of such apparent inhomogeneous signatures in the H2–H2O system all…
CARS spectroscopy of CH4 for implication of temperature measurements in supercritical LOX/CH4 combustion
International audience; Experimental and theoretical investigations of coherent anti-Stokes Raman spectroscopy of CH4 have been carried out. Experimental spectra were measured in a heated high-pressure test cell and compared with numerical simulations. Good agreement was obtained for the temperature and the pressure dependence of CARS spectra in the ranges 300-1100 K and 0.1-5.0 MPa. The observed dependencies provide useful guidance for CARS thermometry, allowing quantitative measurements of temperature in high-pressure combustors. Application of multiplex CH4 CARS thermometry for single-shot measurements in a LOX/CH4 combustion at high pressure was demonstrated at supercritical conditions …
CARS methane spectra: Experiments and simulations for temperature diagnostic purposes
International audience; CARS laboratory experiments were done in the 2905-2925 cm(-1) range, in the vicinity of the v, band of the methane molecule, for pressures ranging from I to 50 bar, and temperatures up to 1100 K. These experiments were carried out in order to retrieve the pressure evolution of the CH4 spectrum, as well as to confirm its temperature dependance. After a brief recall on the theory used to compute pressure broadening coefficients and relaxation rates, we consider the v(3) and v(4) infrared bands of methane for benchmark calculations purposes. Next, we present recent experimental CARS spectra and calculated ones. Lastly, we discuss flame experiments as well as comparisons…