0000000000793394
AUTHOR
J Sarén
Spectroscopy of 70Kr and isospin symmetry in the T = 1 f pg shell nuclei
International audience; The recoil-β tagging technique has been used in conjunction with the 40 Ca(32 S ,2n) reaction at a beam energy of 88 MeV to identify transitions associated with the decay of the 2 + and, tentatively, 4 + states in the nucleus 70 Kr. These data are used, along with previously published data, to examine the triplet energy differences (TED) for the mass 70 isobars. The experimental TED values are compared with shell model calculations, performed with the JUN45 interaction in the fpg model space, that include a J = 0 isospin nonconserving (INC) interaction with an isotensor strength of 100 keV. The agreement is found to be very good up to spin 4 and supports the expectat…
Evidence for octupole collectivity in $$^{172}{\mathrm {Pt}}$$172Pt
Evolving collective structures in the transitional nuclei 162W and 164W
Excited states in the neutron-deficient nuclides 162 74 W88 and 164 74 W90 were investigated by using the γ -ray spectrometer Jurogam. A change in structure is apparent from the first rotational alignments in 162W and 164W, whose rotationally aligned bands are interpreted as ν(h9/2) 2 and ν(i13/2) 2 configurations, respectively. The level schemes have been extended using recoil (-decay) correlations with the observation of excited collective structures. Configuration assignments have been made on the basis of comparisons of the deduced aligned angular momentum, as a function of rotational frequency, with the predictions of the cranked shell model. peerReviewed
α -decay spectroscopy of the N=130 isotones Ra 218 and Th 220: Mitigation of α -particle energy summing with implanted nuclei
An analysis technique has been developed in order to mitigate energy summing due to sequential short-lived α decays from nuclei implanted into a silicon detector. Using this technique, α-decay spectroscopy of the N=130 isotones Ra218 (Z=88) and Th220 (Z=90) has been performed. The energies of the α particles emitted in the Ra218→Rn214 and Th220→Ra216 ground-state-to-ground-state decays have been measured to be 8381(4) keV and 8818(13) keV, respectively. The half-lives of the ground states of Ra218 and Th220 have been measured to be 25.99(10) μs and 10.4(4) μs, respectively. The half-lives of the ground states of the α-decay daughters, Rn214 and Ra216, have been measured to be 259(3) ns and …