0000000000794269

AUTHOR

Khabat Khosravi

0000-0001-5773-4003

showing 1 related works from this author

Evaluation of deep learning algorithms for national scale landslide susceptibility mapping of Iran

2021

The identification of landslide-prone areas is an essential step in landslide hazard assessment and mitigation of landslide-related losses. In this study, we applied two novel deep learning algorithms, the recurrent neural network (RNN) and convolutional neural network (CNN), for national-scale landslide susceptibility mapping of Iran. We prepared a dataset comprising 4069 historical landslide locations and 11 conditioning factors (altitude, slope degree, profile curvature, distance to river, aspect, plan curvature, distance to road, distance to fault, rainfall, geology and land-sue) to construct a geospatial database and divided the data into the training and the testing dataset. We then d…

010504 meteorology & atmospheric sciencesReceiver operating characteristicbusiness.industryDeep learningSpatial databaselcsh:QE1-996.5Deep learningLandslideIranLandslide susceptibility010502 geochemistry & geophysicsRNN01 natural sciencesConvolutional neural networklcsh:GeologyLandslideRecurrent neural networkGeneral Earth and Planetary SciencesArtificial intelligenceScale (map)businessAlgorithmCNNGeology0105 earth and related environmental sciencesGeoscience Frontiers
researchProduct