6533b833fe1ef96bd129b7d3

RESEARCH PRODUCT

Evaluation of deep learning algorithms for national scale landslide susceptibility mapping of Iran

Mahdi PanahiOmid GhorbanzadehArtemi CerdàSaro LeeNarges KariminejadKhabat KhosraviPhuong Thao Thi Ngo

subject

010504 meteorology & atmospheric sciencesReceiver operating characteristicbusiness.industryDeep learningSpatial databaselcsh:QE1-996.5Deep learningLandslideIranLandslide susceptibility010502 geochemistry & geophysicsRNN01 natural sciencesConvolutional neural networklcsh:GeologyLandslideRecurrent neural networkGeneral Earth and Planetary SciencesArtificial intelligenceScale (map)businessAlgorithmCNNGeology0105 earth and related environmental sciences

description

The identification of landslide-prone areas is an essential step in landslide hazard assessment and mitigation of landslide-related losses. In this study, we applied two novel deep learning algorithms, the recurrent neural network (RNN) and convolutional neural network (CNN), for national-scale landslide susceptibility mapping of Iran. We prepared a dataset comprising 4069 historical landslide locations and 11 conditioning factors (altitude, slope degree, profile curvature, distance to river, aspect, plan curvature, distance to road, distance to fault, rainfall, geology and land-sue) to construct a geospatial database and divided the data into the training and the testing dataset. We then developed RNN and CNN algorithms to generate landslide susceptibility maps of Iran using the training dataset. We calculated the receiver operating characteristic (ROC) curve and used the area under the curve (AUC) for the quantitative evaluation of the landslide susceptibility maps using the testing dataset. Better performance in both the training and testing phases was provided by the RNN algorithm (AUC ​= ​0.88) than by the CNN algorithm (AUC ​= ​0.85). Finally, we calculated areas of susceptibility for each province and found that 6% and 14% of the land area of Iran is very highly and highly susceptible to future landslide events, respectively, with the highest susceptibility in Chaharmahal and Bakhtiari Province (33.8%). About 31% of cities of Iran are located in areas with high and very high landslide susceptibility. The results of the present study will be useful for the development of landslide hazard mitigation strategies.

https://doi.org/10.1016/j.gsf.2020.06.013