0000000000794268
AUTHOR
Narges Kariminejad
Evaluation of deep learning algorithms for national scale landslide susceptibility mapping of Iran
The identification of landslide-prone areas is an essential step in landslide hazard assessment and mitigation of landslide-related losses. In this study, we applied two novel deep learning algorithms, the recurrent neural network (RNN) and convolutional neural network (CNN), for national-scale landslide susceptibility mapping of Iran. We prepared a dataset comprising 4069 historical landslide locations and 11 conditioning factors (altitude, slope degree, profile curvature, distance to river, aspect, plan curvature, distance to road, distance to fault, rainfall, geology and land-sue) to construct a geospatial database and divided the data into the training and the testing dataset. We then d…
Assessing and mapping multi-hazard risk susceptibility using a machine learning technique
AbstractThe aim of the current study was to suggest a multi-hazard probability assessment in Fars Province, Shiraz City, and its four strategic watersheds. At first, we construct maps depicting the most effective factors on floods (12 factors), forest fires (10 factors), and landslides (10 factors), and used the Boruta algorithm to prioritize the impact of each respective factor on the occurrence of each hazard. Subsequently, flood, landslides, and forest fire susceptibility maps prepared using a Random Forest (RF) model in the R statistical software. Results indicate that 42.83% of the study area are not susceptible to any hazards, while 2.67% of the area is at risk of all three hazards. T…