0000000000794268

AUTHOR

Narges Kariminejad

showing 2 related works from this author

Evaluation of deep learning algorithms for national scale landslide susceptibility mapping of Iran

2021

The identification of landslide-prone areas is an essential step in landslide hazard assessment and mitigation of landslide-related losses. In this study, we applied two novel deep learning algorithms, the recurrent neural network (RNN) and convolutional neural network (CNN), for national-scale landslide susceptibility mapping of Iran. We prepared a dataset comprising 4069 historical landslide locations and 11 conditioning factors (altitude, slope degree, profile curvature, distance to river, aspect, plan curvature, distance to road, distance to fault, rainfall, geology and land-sue) to construct a geospatial database and divided the data into the training and the testing dataset. We then d…

010504 meteorology & atmospheric sciencesReceiver operating characteristicbusiness.industryDeep learningSpatial databaselcsh:QE1-996.5Deep learningLandslideIranLandslide susceptibility010502 geochemistry & geophysicsRNN01 natural sciencesConvolutional neural networklcsh:GeologyLandslideRecurrent neural networkGeneral Earth and Planetary SciencesArtificial intelligenceScale (map)businessAlgorithmCNNGeology0105 earth and related environmental sciencesGeoscience Frontiers
researchProduct

Assessing and mapping multi-hazard risk susceptibility using a machine learning technique

2020

AbstractThe aim of the current study was to suggest a multi-hazard probability assessment in Fars Province, Shiraz City, and its four strategic watersheds. At first, we construct maps depicting the most effective factors on floods (12 factors), forest fires (10 factors), and landslides (10 factors), and used the Boruta algorithm to prioritize the impact of each respective factor on the occurrence of each hazard. Subsequently, flood, landslides, and forest fire susceptibility maps prepared using a Random Forest (RF) model in the R statistical software. Results indicate that 42.83% of the study area are not susceptible to any hazards, while 2.67% of the area is at risk of all three hazards. T…

MultidisciplinaryWatershed010504 meteorology & atmospheric sciencesFlood mythGini coefficientScienceFlooding (psychology)QNatural hazardsRLandslide010501 environmental sciences01 natural sciencesHazardArticleRandom forestMulti hazard13. Climate actionEnvironmental scienceMedicineHydrologyCartography0105 earth and related environmental sciencesScientific Reports
researchProduct