0000000000794294

AUTHOR

Richard Schlitz

0000-0001-5756-6716

Temperature dependence of the non-local spin Seebeck effect in YIG/Pt nanostructures

We study the transport of thermally excited non-equilibrium magnons through the ferrimagnetic insulator YIG using two electrically isolated Pt strips as injector and detector. The diffusing magnons induce a non-local inverse spin Hall voltage in the detector corresponding to the so-called non-local spin Seebeck effect (SSE). We measure the non-local SSE as a function of temperature and strip separation. In experiments at room temperature we observe a sign change of the non-local SSE voltage at a characteristic strip separation d0, in agreement with previous investigations. At lower temperatures however, we find a strong temperature dependence of d0. This suggests that both the angular momen…

research product

Broadband Terahertz Probes of Anisotropic Magnetoresistance Disentangle Extrinsic and Intrinsic Contributions

Anisotropic magnetoresistance (AMR) is a ubiquitous and versatile probe of magnetic order in contemporary spintronics research. Its origins are usually ascribed to extrinsic effects (i.e. spin-dependent electron scattering), whereas intrinsic (i.e. scattering-independent) contributions are neglected. Here, we measure AMR of polycrystalline thin films of the standard ferromagnets Co, Ni, Ni81Fe19 and Ni50Fe50 over the frequency range from DC to 28 THz. The large bandwidth covers the regimes of both diffusive and ballistic intraband electron transport and, thus, allows us to separate extrinsic and intrinsic AMR components. Analysis of the THz response based on Boltzmann transport theory revea…

research product

Spin Hall magnetoresistance in antiferromagnet/heavy-metal heterostructures

We investigate the spin Hall magnetoresistance in thin-film bilayer heterostructures of the heavy metal Pt and the antiferromagnetic insulator NiO. While rotating an external magnetic field in the easy plane of NiO, we record the longitudinal and the transverse resistivity of the Pt layer and observe an amplitude modulation consistent with the spin Hall magnetoresistance. In comparison to Pt on collinear ferrimagnets, the modulation is phase shifted by ${90}^{\ensuremath{\circ}}$ and its amplitude strongly increases with the magnitude of the magnetic field. We explain the observed magnetic field dependence of the spin Hall magnetoresistance in a comprehensive model taking into account magne…

research product