0000000000794814

AUTHOR

M. Walze

Supersymmetry and Noncommutative Geometry

The purpose of this article is to apply the concept of the spectral triple, the starting point for the analysis of noncommutative spaces in the sense of A.~Connes, to the case where the algebra $\cA$ contains both bosonic and fermionic degrees of freedom. The operator $\cD$ of the spectral triple under consideration is the square root of the Dirac operator und thus the forms of the generalized differential algebra constructed out of the spectral triple are in a representation of the Lorentz group with integer spin if the form degree is even and they are in a representation with half-integer spin if the form degree is odd. However, we find that the 2-forms, obtained by squaring the connectio…

research product

Gravity, Non-Commutative Geometry and the Wodzicki Residue

We derive an action for gravity in the framework of non-commutative geometry by using the Wodzicki residue. We prove that for a Dirac operator $D$ on an $n$ dimensional compact Riemannian manifold with $n\geq 4$, $n$ even, the Wodzicki residue Res$(D^{-n+2})$ is the integral of the second coefficient of the heat kernel expansion of $D^{2}$. We use this result to derive a gravity action for commutative geometry which is the usual Einstein Hilbert action and we also apply our results to a non-commutative extension which, is given by the tensor product of the algebra of smooth functions on a manifold and a finite dimensional matrix algebra. In this case we obtain gravity with a cosmological co…

research product