0000000000795700

AUTHOR

Viliam Geffert

New Results on the Minimum Amount of Useful Space

We present several new results on minimal space requirements to recognize a nonregular language: (i) realtime nondeterministic Turing machines can recognize a nonregular unary language within weak $\log\log n$ space, (ii) $\log\log n$ is a tight space lower bound for accepting general nonregular languages on weak realtime pushdown automata, (iii) there exist unary nonregular languages accepted by realtime alternating one-counter automata within weak $\log n$ space, (iv) there exist nonregular languages accepted by two-way deterministic pushdown automata within strong $\log\log n$ space, and, (v) there exist unary nonregular languages accepted by two-way one-counter automata using quantum an…

research product

Classical automata on promise problems

Promise problems were mainly studied in quantum automata theory. Here we focus on state complexity of classical automata for promise problems. First, it was known that there is a family of unary promise problems solvable by quantum automata by using a single qubit, but the number of states required by corresponding one-way deterministic automata cannot be bounded by a constant. For this family, we show that even two-way nondeterminism does not help to save a single state. By comparing this with the corresponding state complexity of alternating machines, we then get a tight exponential gap between two-way nondeterministic and one-way alternating automata solving unary promise problems. Secon…

research product