0000000000795731
AUTHOR
My L. Phu
Transcriptome profiling of citrus fruit response to huanglongbing disease.
Huanglongbing (HLB) or "citrus greening" is the most destructive citrus disease worldwide. In this work, we studied host responses of citrus to infection with Candidatus Liberibacter asiaticus (CaLas) using next-generation sequencing technologies. A deep mRNA profile was obtained from peel of healthy and HLB- affected fruit. It was followed by pathway and protein-protein network analysis and quantitative real time PCR analysis of highly regulated genes. We identified differentially regulated pathways and constructed networks that provide a deep insight into the metabolism of affected fruit. Data mining revealed that HLB enhanced transcription of genes involved in the light reactions of phot…
Molecular Responses to Small Regulating Molecules against Huanglongbing Disease
Huanglongbing (HLB; citrus greening) is the most devastating disease of citrus worldwide. No cure is yet available for this disease and infected trees generally decline after several months. Disease management depends on early detection of symptoms and chemical control of insect vectors. In this work, different combinations of organic compounds were tested for the ability to modulate citrus molecular responses to HLB disease beneficially. Three small-molecule regulating compounds were tested: 1) L-arginine, 2) 6-benzyl-adenine combined with gibberellins, and 3) sucrose combined with atrazine. Each treatment contained K-phite mineral solution and was tested at two different concentrations. T…
Transcriptome and metabolome analysis of citrus fruit to elucidate puffing disorder.
a b s t r a c t A systems-level analysis reveals details of molecular mechanisms underlying puffing disorder in Citrus fruit. Flavedo, albedo and juice sac tissues of normal fruits and fruits displaying symptoms of puffing disorder were studied using metabolomics at three developmental stages. Microarrays were used to compare normal and puffed fruits for each of the three tissues. A protein-protein interaction network inferred from previous work on Arabidopsis identified hub proteins whose transcripts show significant changes in expression. Glycolysis, the backbone of primary metabolism, appeared to be severely affected by the disorder, based on both transcriptomic and metabolomic results. …
Gene regulatory networks elucidating Huanglongbing disease mechanisms
Next-generation sequencing was exploited to gain deeper insight into the response to infection by Candidatus liberibacter asiaticus (CaLas), especially the immune disregulation and metabolic dysfunction caused by source-sink disruption. Previous fruit transcriptome data were compared with additional RNA-Seq data in three tissues: immature fruit, and young and mature leaves. Four categories of orchard trees were studied: symptomatic, asymptomatic, apparently healthy, and healthy. Principal component analysis found distinct expression patterns between immature and mature fruits and leaf samples for all four categories of trees. A predicted protein - protein interaction network identified HLB-…