0000000000795950

AUTHOR

Hsiang Chih Lu

showing 1 related works from this author

Disruption of the ATXN1-CIC complex causes a spectrum of neurobehavioral phenotypes in mice and humans

2017

International audience; Gain-of-function mutations in some genes underlie neurodegenerative conditions, whereas loss-of-function mutations in the same genes have distinct phenotypes. This appears to be the case with the protein ataxin 1 (ATXN1), which forms a transcriptional repressor complex with capicua (CIC). Gain of function of the complex leads to neurodegeneration, but ATXN1-CIC is also essential for survival. We set out to understand the functions of the ATXN1-CIC complex in the developing forebrain and found that losing this complex results in hyperactivity, impaired learning and memory, and abnormal maturation and maintenance of upper-layer cortical neurons. We also found that CIC …

Male0301 basic medicineAutism Spectrum DisorderAtaxin 1neuronsautismNerve Tissue Proteinsattention-deficit/hyperactivity disorderAmygdalaArticleMice03 medical and health sciencesTranscriptional repressor complexataxin-1Cerebellum[ SDV.MHEP ] Life Sciences [q-bio]/Human health and pathologyGeneticsmedicineAnimalsHumansAttention deficit hyperactivity disorderInterpersonal Relationssca1 neuropathologybiologysocial-behaviorNeurodegenerationcag repeatNuclear ProteinsNeurodegenerative Diseasesmedicine.diseasePhenotypeRepressor ProteinsPhenotype030104 developmental biologymedicine.anatomical_structureAutism spectrum disorderintellectual disabilitybiology.proteinAutismFemaleNeurosciencetime pcr datarepressor capicua[SDV.MHEP]Life Sciences [q-bio]/Human health and pathology
researchProduct