0000000000796303

AUTHOR

Heikki Rinta

showing 12 related works from this author

Poly[[myy-N,N'-bis(2-hydroxyethyl)-N,N,N',N'-tetramethylpropane-1,3-diaminium-kappa2O:O']tetra-myy-bromido-dibromidodimanganese(II)]

2012

The asymmetric unit of the title three-dimensional coordination polymer, [Mn2Br6(C11H28N2O2)]n, consists of one MnII cation, half of a dicationic N,N0 -bis(2-hydroxyethyl)- N,N,N0 ,N0 -tetramethylpropane-1,3-diaminium ligand (L) (the other half being generated by a twofold rotation axis), and three bromide ions. The MnII cation is coordinated by a single L ligand via the hydroxy O atom and by five bromide ions, resulting in a distorted octahedral MnBr5O coordination geometry. Four of the bromide ions are bridging to two adjacent MnII atoms, thereby forming polymeric chains along the a and b axes. The L units act as links between neighbouring Mn—(-Br)2—Mn chains, also forming a polymeric con…

röntgendiffraktiocrystal structurex-ray diffractionmetallo-orgaaninen verkkorakennekiderakennemetal-organic framework
researchProduct

Detecting explosive substances by the IR spectrography

2014

Fast and safe detection methods of explosive substances are needed both before and after actualized explosions. This article presents an experiment of the detection of three selected explosives by the ATR FTIR spectrometer and by three different IR hyperspectral imaging devices. The IR spectrometers give accurate analyzing results, whereas hyperspectral imagers can detect and analyze desired samples without touching the unidentified target at all. In the controlled explosion experiment TNT, dynamite and PENO were at first analyzed as pure substances with the ATR FTIR spectrometer and with VNIR, SWIR and MWIR cameras. After three controlled explosions also the residues of TNT, dynamite and P…

ta113ta222Materials scienceSpectrometerDynamiteExplosive materialHyperspectral imaginglaw.inventionVNIRlawFt ir spectroscopyFourier transform infrared spectroscopySpectroscopyta116Remote sensing
researchProduct

The challenges of analysing blood stains with hyperspectral imaging

2014

Hyperspectral imaging is a potential noninvasive technology for detecting, separating and identifying various substances. In the forensic and military medicine and other CBRNE related use it could be a potential method for analyzing blood and for scanning other human based fluids. For example, it would be valuable to easily detect whether some traces of blood are from one or more persons or if there are some irrelevant substances or anomalies in the blood. This article represents an experiment of separating four persons' blood stains on a white cotton fabric with a SWIR hyperspectral camera and FT-NIR spectrometer. Each tested sample includes standardized 75 _l of 100 % blood. The results s…

ta113ta222SpectrometerComputer sciencebusiness.industrySample (material)Blood StainsNear-infrared spectroscopyHyperspectral imagingPattern recognitionArtificial intelligencebusinessta116
researchProduct

NI halogen bonding supported stabilization of a discrete pseudo-linear [I12]2− polyiodide

2015

Two different dicationic N-donors, based on the DABCO diamine, have been studied as templates for polyiodides. The results present a new strategy for polyiodide stabilization, which involves both N⋯I halogen bonding and cation–anion interactions. This is highlighted by the self-assembly of an unprecedented discrete pseudo-linear dodecaiodide species.

Halogen bondInorganic chemistryGeneral ChemistryDABCOCondensed Matter Physicschemistry.chemical_compoundPolyiodideTemplatechemistryhalogen bondingDiaminePolymer chemistryGeneral Materials Scienceta116CrystEngComm
researchProduct

Poly[[μ-N,N′-bis(2-hydroxyethyl)-N,N,N′,N′-tetramethylpropane-1,3-diaminium-κ2O:O′]tetra-μ-bromido-dibromidodimanganese(II)]

2012

The asymmetric unit of the title three-dimensional coordination polymer, [Mn2Br6(C11H28N2O2)] n , consists of one Mn(II) cation, half of a dicationic N,N'-bis-(2-hy-droxy-eth-yl)-N,N,N',N'-tetra-methyl-propane-1,3-diaminium ligand (L) (the other half being generated by a twofold rotation axis), and three bromide ions. The Mn(II) cation is coordinated by a single L ligand via the hy-droxy O atom and by five bromide ions, resulting in a distorted octa-hedral MnBr5O coordination geometry. Four of the bromide ions are bridging to two adjacent Mn(II) atoms, thereby forming polymeric chains along the a and b axes. The L units act as links between neighbouring Mn-(μ-Br)2-Mn chains, also forming a …

Metal-Organic PapersbiologyCoordination polymerHydrogen bondGeneral ChemistryCondensed Matter Physicsbiology.organism_classificationBioinformaticschemistry.chemical_compoundCrystallographychemistryPropaneAtomTetraGeneral Materials Scienceta116Coordination geometryBromide ionsActa Crystallographica Section E Structure Reports Online
researchProduct

CCDC 1023710: Experimental Crystal Structure Determination

2014

Related Article: Anssi Peuronen, Heikki Rinta, Manu Lahtinen|2015|CrystEngComm|17|1736|doi:10.1039/C4CE01866D

Space GroupCrystallography11'-octane-18-diylbis(4-diiodaniumyl-14-diazoniabicyclo[2.2.2]octane) octaiodideCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1023705: Experimental Crystal Structure Determination

2014

Related Article: Anssi Peuronen, Heikki Rinta, Manu Lahtinen|2015|CrystEngComm|17|1736|doi:10.1039/C4CE01866D

Space GroupCrystallography11'-hexane-16-diylbis(4-diiodaniumyl-14-diazoniabicyclo[2.2.2]octane) bis(pentaiodide) tris(diiodo)Crystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1023709: Experimental Crystal Structure Determination

2014

Related Article: Anssi Peuronen, Heikki Rinta, Manu Lahtinen|2015|CrystEngComm|17|1736|doi:10.1039/C4CE01866D

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameters11'-octane-18-diylbis(4-aza-1-azoniabicyclo[2.2.2]octane) bis(triiodide)Experimental 3D Coordinates
researchProduct

CCDC 1023706: Experimental Crystal Structure Determination

2014

Related Article: Anssi Peuronen, Heikki Rinta, Manu Lahtinen|2015|CrystEngComm|17|1736|doi:10.1039/C4CE01866D

Space GroupCrystallographyCrystal SystemCrystal Structure11'-hexane-16-diylbis(4-aza-1-azoniabicyclo[2.2.2]octane) bis(triiodide)Cell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1023708: Experimental Crystal Structure Determination

2014

Related Article: Anssi Peuronen, Heikki Rinta, Manu Lahtinen|2015|CrystEngComm|17|1736|doi:10.1039/C4CE01866D

Space GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates11'-octane-18-diylbis(4-diiodaniumyl-14-diazoniabicyclo[2.2.2]octane) bis(hexafluorophosphate)
researchProduct

CCDC 1023704: Experimental Crystal Structure Determination

2014

Related Article: Anssi Peuronen, Heikki Rinta, Manu Lahtinen|2015|CrystEngComm|17|1736|doi:10.1039/C4CE01866D

11'-hexane-16-diylbis(4-diiodaniumyl-14-diazoniabicyclo[2.2.2]octane) bis(hexafluorophosphate)Space GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1023707: Experimental Crystal Structure Determination

2014

Related Article: Anssi Peuronen, Heikki Rinta, Manu Lahtinen|2015|CrystEngComm|17|1736|doi:10.1039/C4CE01866D

Space GroupCrystallography11'-hexane-16-diylbis(4-aza-1-azoniabicyclo[2.2.2]octane) tetraiodideCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct