0000000000798053

AUTHOR

María Belén Hinojosa

Experimental drought induces short-term changes in soil functionality and microbial community structure after fire in a Mediterranean shrubland

Abstract. Fire is a major ecosystem driver, causing significant changes in soil nutrients and microbial community structure and functionality. Post-fire soil dynamics can vary depending on rainfall patterns, although variations in response to drought are poorly known. This is particularly important in areas with poor soils and limited rainfall, like arid and semiarid ones. Furthermore, climate change projections in many such areas anticipate reduced precipitation and longer drought, together with an increase in fire severity. The effects of experimental drought and fire were studied on soils in a Mediterranean Cistus-Erica shrubland in Central Spain. A replicated (n = 4) field experiment wa…

research product

Drought and its legacy modulate the post-fire recovery of soil functionality and microbial community structure in a Mediterranean shrubland.

The effects of drought on soil dynamics after fire are poorly known, particularly its long-term (i.e., years) legacy effects once rainfall returns to normal. Understanding this is particularly important for nutrient-poor soils in semi-arid regions affected by fire, in which rainfall is projected to decrease with climate change. Here, we studied the effects of post-fire drought and its legacy on soil microbial community structure and functionality in a Cistus-Erica shrubland (Spain). Rainfall total and patterns were experimentally modified to produce an unburned control (natural rainfall) and four burned treatments: control (natural rainfall), historical control (long-term average rainfall),…

research product