Some insights into the impact of affective information when delivering feedback to students
The relation between affect-driven feedback and engagement on a given task has been largely investigated. This relation can be used to make personalised instructional decisions and/or modif...
Filtering of Spontaneous and Low Intensity Emotions in Educational Contexts
Affect detection is a challenging problem, even more in educational contexts, where emotions are spontaneous and usually subtle. In this paper, we propose a two-stage detection approach based on an initial binary discretization followed by a specific emotion prediction stage. The binary classification method uses several distinct sources of information to detect and filter relevant time slots from an affective point of view. An accuracy close to 75% at detecting whether the learner has felt an educationally relevant emotion on 20 second time slots has been obtained. These slots can then be further analyzed by a second classifier, to determine the specific user emotion.
BIG-AFF
Recent research has provided solid evidence that emotions strongly affect motivation and engagement, and hence play an important role in learning. In BIG-AFF project, we build on the hypothesis that ``it is possible to provide learners with a personalised support that enriches their learning process and experience by using low intrusive (and low cost) devices to capture affective multimodal data that include cognitive, behavioural and physiological information''. In order to deal with the affect management complete cycle, thus covering affect detection, modelling and feedback, there is lack of standards and consolidated methodologies. Being our goal to develop realistic affect-aware learnin…