0000000000798145

AUTHOR

Raúl Cabestrero

0000-0003-3697-1303

showing 3 related works from this author

Some insights into the impact of affective information when delivering feedback to students

2018

The relation between affect-driven feedback and engagement on a given task has been largely investigated. This relation can be used to make personalised instructional decisions and/or modif...

Relation (database)05 social sciences050301 educationGeneral Social Sciences050105 experimental psychologyTask (project management)Human-Computer InteractionArts and Humanities (miscellaneous)Developmental and Educational Psychology0501 psychology and cognitive sciencesAffective computingPsychology0503 educationCognitive psychologyBehaviour & Information Technology
researchProduct

Filtering of Spontaneous and Low Intensity Emotions in Educational Contexts

2015

Affect detection is a challenging problem, even more in educational contexts, where emotions are spontaneous and usually subtle. In this paper, we propose a two-stage detection approach based on an initial binary discretization followed by a specific emotion prediction stage. The binary classification method uses several distinct sources of information to detect and filter relevant time slots from an affective point of view. An accuracy close to 75% at detecting whether the learner has felt an educationally relevant emotion on 20 second time slots has been obtained. These slots can then be further analyzed by a second classifier, to determine the specific user emotion.

DiscretizationPoint (typography)Binary classificationComputer scienceSpeech recognitionClassifier (linguistics)Binary numberFilter (signal processing)Affective computingAffect (psychology)
researchProduct

BIG-AFF

2017

Recent research has provided solid evidence that emotions strongly affect motivation and engagement, and hence play an important role in learning. In BIG-AFF project, we build on the hypothesis that ``it is possible to provide learners with a personalised support that enriches their learning process and experience by using low intrusive (and low cost) devices to capture affective multimodal data that include cognitive, behavioural and physiological information''. In order to deal with the affect management complete cycle, thus covering affect detection, modelling and feedback, there is lack of standards and consolidated methodologies. Being our goal to develop realistic affect-aware learnin…

Process (engineering)Computer scienceMultimodal data05 social sciences050301 educationCognition02 engineering and technologyAffect (psychology)Data scienceUser studiesWork (electrical)Human–computer interactionOrder (exchange)0202 electrical engineering electronic engineering information engineering020201 artificial intelligence & image processingAffective computing0503 educationAdjunct Publication of the 25th Conference on User Modeling, Adaptation and Personalization
researchProduct