High-temperature series expansion for the relaxation times of the two dimensional Ising model
We derive the high temperature series expansions for the two relaxation times of the single spin-flip kinetic Ising model on the square lattice. The series for the linear relaxation time τl is obtained with 20 non-trivial terms, and the analysis yields 2.183±0.005 as the value of the critical exponentΔl, which is equal to the dynamical critical exponentz in the two-dimensional case. For the non-linear relaxation time we obtain 15 non-trivial terms, and the analysis leads to the resultsΔnl = 2.08 ± 0.07. The scaling relationΔl −Δnl = β (β being the exponent of the order parameter) seems to be fulfilled, though the error bars ofΔnl are still quite substantial. In addition, we obtain the serie…