0000000000798403
AUTHOR
Eleonora Tenori
Chemical modification of carbon nanomaterials (SWCNTs, DWCNTs, MWCNTs and SWCNHs) with diphenyl dichalcogenides
Control over chemical functionalization is a crucial point in the field of nanotechnology. Herein, we present the covalent functionalization of several carbon nanoforms (single-walled carbon nanotubes, double-walled carbon nanotubes, multi-walled carbon nanotubes and carbon nanohorns) by means of diphenyl dichalcogenides. These ones show different reactivity to the nanomaterials and are able to modify their electronic properties depending on the electronegativity of the functionalizing heteroatom. Theoretical calculations were also performed to support the experimental results. All the modified structured nanocarbons were thoroughly characterized by TGA Raman, XPS, UV/Vis/nIR, IR and TEM te…
Unravelling Radicals Reactivity Towards Carbon Nanotubes Manipulation/Functionalization
Carbon Nanotubes (CNTs) chemistry is under constant evolution, as a consequence of the deep interest of the scientific community in finding new applications for these versatile materials. New and old synthetic protocols are used for improving the control of the functionalization degree of the final materials and for offering to scientists the possibility to fine-tune their final properties. In this Review, we focus the attention on radical reactions, a class of protocols characterized by small number of steps, different degrees of functionalization and enhanced solubility of the final modified CNTs, in the desired environment. The most well-known protocols are analysed providing some releva…
Perylene Derivatives As Useful SERRS Reporters, Including Multiplexing Analysis
Five perylene bisimide (PBI) derivatives were designed and synthesized, on the basis of quantum-chemical calculations. The influence of halogen substituents on the shape and energy of the frontier orbitals and the Raman spectra were calculated, in the prospect use in surface-enhanced resonance Raman scattering (SERRS) studies. The corresponding experiments confirmed a very strong SERRS response in the presence of pristine (i.e., uncoated) gold nanoparticles. These spectra can be used for multiplexing measurements, namely measurements in which, by using a single laser excitation, one can recognize the simultaneous presence of several analytes.