0000000000798490

AUTHOR

Ruth Charney

Automorphisms of 2–dimensional right-angled Artin groups

We study the outer automorphism group of a right-angled Artin group AA in the case where the defining graph A is connected and triangle-free. We give an algebraic description of Out.AA/ in terms of maximal join subgraphs in A and prove that the Tits’ alternative holds for Out.AA/. We construct an analogue of outer space for Out.AA/ and prove that it is finite dimensional, contractible, and has a proper action of Out.AA/. We show that Out.AA/ has finite virtual cohomological dimension, give upper and lower bounds on this dimension and construct a spine for outer space realizing the most general upper bound. 20F36; 20F65, 20F28

research product

Automorphism groups of some affine and finite type Artin groups

We observe that, for fixed n ≥ 3, each of the Artin groups of finite type An, Bn = Cn, and affine type ˜ An−1 and ˜ Cn−1 is a central extension of a finite index subgroup of the mapping class group of the (n + 2)-punctured sphere. (The centre is trivial in the affine case and infinite cyclic in the finite type cases). Using results of Ivanov and Korkmaz on abstract commensurators of surface mapping class groups we are able to determine the automorphism groups of each member of these four infinite families of Artin groups. A rank n Coxeter matrix is a symmetric n × n matrix M with integer entries mij ∈ N ∪ {∞} where mij ≥ 2 for ij, and mii = 1 for all 1 ≤ i ≤ n. Given any rank n Coxeter matr…

research product