0000000000799077

AUTHOR

Hongbin Song

Finite element analysis of laser shock peening of 2050-T8 aluminum alloy

Laser shock processing is a recently developed surface treatment designed to improve the mechanical properties and fatigue performance of materials, by inducing a deep compressive residual stress field. The purpose of this work is to investigate the residual stress distribution induced by laser shock processing in a 2050-T8 aeronautical aluminium alloy with both X-ray diffraction measurements and 3D finite element simulation. The method of X-ray diffraction is extensively used to characterize the crystallographic texture and the residual stress crystalline materials at different scales (macroscopic, mesoscopic and microscopic).Shock loading and materials’ dynamic response are experimentally…

research product

Laser shock processing with two different laser sources on 2050‐T8 aluminum alloy

PurposeThe purpose of this paper is to conduct a comparative study of the surface modifications induced by two different lasers on a 2050‐T8 aluminum alloy, with a specific consideration of residual stress and work‐hardening levels.Design/methodology/approachTwo lasers have been used for Laser shock peening (LSP) treatment in water‐confined regime: a Continuum Powerlite Plus laser, operating at 0.532 mm with 9 ns laser pulses, and near 1.5mm spot diameters; a new generation Gaia‐R Thales laser delivering 10 J‐10 ns impacts, with 4‐6mm homogeneous laser spots at 1.06 mm. Surface deformation, work‐hardening levels and residual stresses were analyzed for both LSP conditions. Residual stresses …

research product