0000000000799081

AUTHOR

Tore Møller Jonassen

Distributed Learning Automata-based S-learning scheme for classification

This paper proposes a novel classifier based on the theory of Learning Automata (LA), reckoned to as PolyLA. The essence of our scheme is to search for a separator in the feature space by imposing an LA-based random walk in a grid system. To each node in the grid, we attach an LA whose actions are the choices of the edges forming a separator. The walk is self-enclosing, and a new random walk is started whenever the walker returns to the starting node forming a closed classification path yielding a many-edged polygon. In our approach, the different LA attached to the different nodes search for a polygon that best encircles and separates each class. Based on the obtained polygons, we perform …

research product

Distributed learning automata for solving a classification task

In this paper, we propose a novel classifier in two-dimensional feature spaces based on the theory of Learning Automata (LA). The essence of our scheme is to search for a separator in the feature space by imposing a LA based random walk in a grid system. To each node in the gird we attach an LA, whose actions are the choice of the edges forming the separator. The walk is self-enclosing, i.e, a new random walk is started whenever the walker returns to starting node forming a closed classification path yielding a many edged polygon. In our approach, the different LA attached at the different nodes search for a polygon that best encircles and separates each class. Based on the obtained polygon…

research product