0000000000799287
AUTHOR
J. C. Cardona
Quark gap equation with non-Abelian Ball-Chiu vertex
The full quark-gluon vertex is a crucial ingredient for the dynamical generation of a constituent quark mass from the standard quark gap equation, and its non-transverse part may be determined exactly from the nonlinear Slavnov-Taylor identity that it satisfies. The resulting expression involves not only the quark propagator, but also the ghost dressing function and the quark-ghost kernel, and constitutes the non-abelian extension of the so-called "Ball-Chiu vertex", known from QED. In the present work we carry out a detailed study of the impact of this vertex on the gap equation and the quark masses generated from it, putting particular emphasis on the contributions directly related with t…
Non-Abelian Ball-Chiu vertex for arbitrary Euclidean momenta
We determine the non-Abelian version of the four longitudinal form factors of the quark-gluon vertex, using exact expressions derived from the Slavnov-Taylor identity that this vertex satisfies. In addition to the quark and ghost propagators, a key ingredient of the present approach is the quark-ghost scattering kernel, which is computed within the one-loop dressed approximation. The vertex form factors obtained from this procedure are evaluated for arbitrary Euclidean momenta, and display features not captured by the well-known Ball-Chiu vertex, deduced from the Abelian (ghost-free) Ward identity. The potential phenomenological impact of these results is evaluated through the study of spec…