0000000000799736
AUTHOR
Antonia Di Crescenzo
Fast simulation of muons produced at the SHiP experiment using Generative Adversarial Networks
This paper presents a fast approach to simulating muons produced in interactions of the SPS proton beams with the target of the SHiP experiment. The SHiP experiment will be able to search for new long-lived particles produced in a 400~GeV$/c$ SPS proton beam dump and which travel distances between fifty metres and tens of kilometers. The SHiP detector needs to operate under ultra-low background conditions and requires large simulated samples of muon induced background processes. Through the use of Generative Adversarial Networks it is possible to emulate the simulation of the interaction of 400~GeV$/c$ proton beams with the SHiP target, an otherwise computationally intensive process. For th…
Tau neutrinos in the next decade: from GeV to EeV
Tau neutrinos are the least studied particle in the standard model. This whitepaper discusses the current and expected upcoming status of tau neutrino physics with attention to the broad experimental and theoretical landscape spanning long-baseline, beam-dump, collider, and astrophysical experiments. This whitepaper was prepared as a part of the NuTau2021 Workshop.
Experiments and Facilities for Accelerator-Based Dark Sector Searches
This paper provides an overview of experiments and facilities for accelerator-based dark matter searches as part of the US Community Study on the Future of Particle Physics (Snowmass 2021). Companion white papers to this paper present the physics drivers: thermal dark matter, visible dark portals, and new flavors and rich dark sectors.