0000000000800187
AUTHOR
Marcy E. Macdonald
Huntingtin controls neurotrophic support and survival of neurons by enhancing BDNF vesicular transport along microtubules.
AbstractPolyglutamine expansion (polyQ) in the protein huntingtin is pathogenic and responsible for the neuronal toxicity associated with Huntington's disease (HD). Although wild-type huntingtin possesses antiapoptotic properties, the relationship between the neuroprotective functions of huntingtin and pathogenesis of HD remains unclear. Here, we show that huntingtin specifically enhances vesicular transport of brain-derived neurotrophic factor (BDNF) along microtubules. Huntingtin-mediated transport involves huntingtin-associated protein-1 (HAP1) and the p150Glued subunit of dynactin, an essential component of molecular motors. BDNF transport is attenuated both in the disease context and b…
Translocations Disrupting PHF21A in the Potocki-Shaffer-Syndrome Region Are Associated with Intellectual Disability and Craniofacial Anomalies
Contains fulltext : 110038.pdf (Publisher’s version ) (Closed access) Potocki-Shaffer syndrome (PSS) is a contiguous gene disorder due to the interstitial deletion of band p11.2 of chromosome 11 and is characterized by multiple exostoses, parietal foramina, intellectual disability (ID), and craniofacial anomalies (CFAs). Despite the identification of individual genes responsible for multiple exostoses and parietal foramina in PSS, the identity of the gene(s) associated with the ID and CFA phenotypes has remained elusive. Through characterization of independent subjects with balanced translocations and supportive comparative deletion mapping of PSS subjects, we have uncovered evidence that t…