0000000000800366

AUTHOR

Takaaki Dohi

showing 5 related works from this author

Influence of domain wall anisotropy on the current-induced hysteresis loop shift for quantification of the Dzyaloshinskii-Moriya interaction

2021

Using several material systems with various magnitudes of the interfacial Dzyaloshinskii-Moriya interaction (DMI), we elucidate a critical influence of domain wall (DW) anisotropy on the current-induced hysteresis loop shift scheme widely employed to determine the magnitude of the Dzyaloshinskii-Moriya effective field (${H}_{\mathrm{DMI}}$). Taking into account the DW anisotropy in the analysis of the hysteresis loop shift, which has not been included in the original model [Phys. Rev. B 93, 144409 (2016)], we show that it provides quantitative agreement of ${H}_{\mathrm{DMI}}$ with that determined from an asymmetric bubble expansion technique for small DMI material systems. For large DMI sy…

PhysicsNonlinear systemDomain wall (magnetism)Current (mathematics)SpintronicsField (physics)Condensed matter physicsMaterial systemAnisotropyMagnetic fieldPhysical Review B
researchProduct

Thin Film Skyrmionics

2022

In condensed matter physics, magnetic skyrmions, topologically stabilized magnetic solitons, have been discovered in various materials systems, which has intrigued the community in terms of not only fundamental physics but also with respect to engineering applications. In particular, skyrmions in thin films are easily manipulable by electrical means even at room temperature. Concomitantly, a variety of possible applications have been proposed and proof-of-concept devices have been demonstrated. Recently, the field of skyrmion-based electronics has been referred to as skyrmionics and this field has been rapidly growing and extended in multiple directions. This review provides recent progres…

Condensed Matter::Quantum GasesPhysicsCondensed matter physicsSkyrmionGeneral Materials ScienceThin filmCondensed Matter::Mesoscopic Systems and Quantum Hall EffectCondensed Matter PhysicsAnnual Review of Condensed Matter Physics
researchProduct

Skyrmion pinning energetics in thin film systems

2022

AbstractA key issue for skyrmion dynamics and devices are pinning effects present in real systems. While posing a challenge for the realization of conventional skyrmionics devices, exploiting pinning effects can enable non-conventional computing approaches if the details of the pinning in real samples are quantified and understood. We demonstrate that using thermal skyrmion dynamics, we can characterize the pinning of a sample and we ascertain the spatially resolved energy landscape. To understand the mechanism of the pinning, we probe the strong skyrmion size and shape dependence of the pinning. Magnetic microscopy imaging demonstrates that in contrast to findings in previous investigation…

Condensed Matter - Materials ScienceMultidisciplinaryroom-temperatureCondensed Matter - Mesoscale and Nanoscale Physics530 PhysicsMaterials Science (cond-mat.mtrl-sci)FOS: Physical sciencesGeneral Physics and AstronomyGeneral ChemistrydynamicsPhysik (inkl. Astronomie)530 PhysikCondensed Matter::Mesoscopic Systems and Quantum Hall EffectGeneral Biochemistry Genetics and Molecular BiologymotionCondensed Matter::SuperconductivityMesoscale and Nanoscale Physics (cond-mat.mes-hall)Hardware_INTEGRATEDCIRCUITS
researchProduct

Brownian reservoir computing realized using geometrically confined skyrmion dynamics

2022

AbstractReservoir computing (RC) has been considered as one of the key computational principles beyond von-Neumann computing. Magnetic skyrmions, topological particle-like spin textures in magnetic films are particularly promising for implementing RC, since they respond strongly nonlinearly to external stimuli and feature inherent multiscale dynamics. However, despite several theoretical proposals that exist for skyrmion reservoir computing, experimental realizations have been elusive until now. Here, we propose and experimentally demonstrate a conceptually new approach to skyrmion RC that leverages the thermally activated diffusive motion of skyrmions. By confining the electrically gated a…

Condensed Matter - Materials ScienceUltrafast Spectroscopy of Correlated MaterialsMultidisciplinary530 PhysicsMaterials Science (cond-mat.mtrl-sci)FOS: Physical sciencesGeneral Physics and AstronomyGeneral ChemistryCondensed Matter::Mesoscopic Systems and Quantum Hall Effect530 PhysikGeneral Biochemistry Genetics and Molecular Biology
researchProduct

Enhanced thermally-activated skyrmion diffusion in synthetic antiferromagnetic systems with tunable effective topological charge

2022

Magnetic skyrmions, topologically-stabilized spin textures that emerge in particular magnetic systems, have attracted attention due to a variety of electromagnetic responses that are governed by the topology. A well-studied effect of topology on the deterministic and drift motion under a nonequilibrium excitation is the so-called skyrmion Hall effect. For stochastic diffusive motion, the effect of topology is expected to have a drastically stronger impact, but the predicted even qualitative impact has not been demonstrated. The required tuning of the topology to achieve zero effective topological charge can be achieved using antiferromagnetic skyrmions. However, the diffusive motion has pre…

Condensed Matter - Materials ScienceMaterials Science (cond-mat.mtrl-sci)FOS: Physical sciencesCondensed Matter::Mesoscopic Systems and Quantum Hall Effect
researchProduct