0000000000800374
AUTHOR
Moritz Ruhwedel
Coupling of ferromagnetic and antiferromagnetic spin dynamics in Mn$_{2}$Au/NiFe thin-film bilayers
We investigate magnetization dynamics of Mn$_{2}$Au/Py (Ni$_{80}$Fe$_{20}$) thin film bilayers using broadband ferromagnetic resonance (FMR) and Brillouin light scattering spectroscopy. Our bilayers exhibit two resonant modes with zero-field frequencies up to almost 40 GHz, far above the single-layer Py FMR. Our model calculations attribute these modes to the coupling of the Py FMR and the two antiferromagnetic resonance (AFMR) modes of Mn2Au. The coupling-strength is in the order of 1.6 T$\cdot$nm at room temperature for nm-thick Py. Our model reveals the dependence of the hybrid modes on the AFMR frequencies and interfacial coupling as well as the evanescent character of the spin waves th…
Enhanced thermally-activated skyrmion diffusion in synthetic antiferromagnetic systems with tunable effective topological charge
Magnetic skyrmions, topologically-stabilized spin textures that emerge in particular magnetic systems, have attracted attention due to a variety of electromagnetic responses that are governed by the topology. A well-studied effect of topology on the deterministic and drift motion under a nonequilibrium excitation is the so-called skyrmion Hall effect. For stochastic diffusive motion, the effect of topology is expected to have a drastically stronger impact, but the predicted even qualitative impact has not been demonstrated. The required tuning of the topology to achieve zero effective topological charge can be achieved using antiferromagnetic skyrmions. However, the diffusive motion has pre…