Computing temporal sequences associated with dynamic patterns on the C. elegans connectome
AbstractUnderstanding how the structural connectivity of a network constrains the dynamics it is able to support is a very active and open area of research. We simulated the plausible dynamics resulting from the known C. elegans connectome using a recent model and theoretical analysis that computes the dynamics of neurobiological networks by focusing on how local interactions among connected neurons give rise to the global dynamics in an emergent way, independent of the biophysical or molecular details of the cells themselves. We studied the dynamics which resulted from stimulating a chemosensory neuron (ASEL) in a known feeding circuit, both in isolation and embedded in the full connectome…