0000000000800806
AUTHOR
Silvia Lassalle
Cluster values of holomorphic functions of bounded type
We study the cluster value theorem for Hb(X), the Fréchet algebra of holomorphic functions bounded on bounded sets of X. We also describe the (size of) fibers of the spectrum of Hb(X). Our results are rather complete whenever X has an unconditional shrinking basis and for X = ℓ1. As a byproduct, we obtain results on the spectrum of the algebra of all uniformly continuous holomorphic functions on the ball of ℓ1. Fil: Aron, Richard Martin. Kent State University; Estados Unidos Fil: Carando, Daniel Germán. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas ; Argentina Fil: Lassalle, S…
Gleason parts for algebras of holomorphic functions on the ball of $\mathbf{c_0}$
For a complex Banach space $X$ with open unit ball $B_X,$ consider the Banach algebras $\mathcal H^\infty(B_X)$ of bounded scalar-valued holomorphic functions and the subalgebra $\mathcal A_u(B_X)$ of uniformly continuous functions on $B_X.$ Denoting either algebra by $\mathcal A,$ we study the Gleason parts of the set of scalar-valued homomorphisms $\mathcal M(\mathcal A)$ on $\mathcal A.$ Following remarks on the general situation, we focus on the case $X = c_0.$