Separation of 90Nb from zirconium target for application in immuno-PET
Abstract Fast progressing immuno-PET asks to explore new radionuclides. One of the promising candidates is 90Nb. It has a half-life of 14.6 h that allows visualizing and quantifying biological processes with medium and slow kinetics, such as tumor accumulation of antibodies and antibodies fragments or drug delivery systems and nanoparticles. 90Nb exhibits a positron branching of 53% and an average kinetic energy of emitted positrons of E mean =0.35 MeV. Currently, radionuclide production routes and Nb V labeling techniques are explored to turn this radionuclide into a useful imaging probe. However, efficient separation of 90Nb from irradiated targets remains in challenge. Ion exchange based…