0000000000802584

AUTHOR

Florian Weigert

showing 3 related works from this author

Citric Acid Based Carbon Dots with Amine Type Stabilizers: pH-Specific Luminescence and Quantum Yield Characteristics

2020

We report the synthesis and spectroscopic characteristics of two different sets of carbon dots (CDs) formed by hydrothermal reaction between citric acid and polyethylenimine (PEI) or 2,3-diaminopyridine (DAP). Although the formation of amide-based species and the presence of citrazinic acid type derivates assumed to be responsible for a blue emission is confirmed for both CDs by elemental analysis, infrared spectroscopy, and mass spectrometry, a higher abundance of sp2-hybridized nitrogen is observed for DAP-based CDs, which causes a red-shift of the n-π* absorption band relative to the one of PEI-based CDs. These CD systems possess high photoluminescence quantum yields (QY) of ∼40% and ∼48…

chemistry.chemical_classificationPolyethylenimineChemistryLigandQuantum yieldchemistry.chemical_element02 engineering and technologyPolymer010402 general chemistry021001 nanoscience & nanotechnology01 natural sciences0104 chemical sciencesSurfaces Coatings and FilmsElectronic Optical and Magnetic Materialschemistry.chemical_compoundGeneral Energyddc:530Amine gas treatingPhysical and Theoretical Chemistry0210 nano-technologyLuminescenceCitric acidCarbonNuclear chemistryThe Journal of Physical Chemistry C
researchProduct

Cover Feature: Triplet–Triplet Annihilation Upconversion in a MOF with Acceptor‐Filled Channels (Chem. Eur. J. 5/2020)

2019

ChemistryFeature (computer vision)Organic ChemistryMetal-organic frameworkCover (algebra)General ChemistryTriplet triplet annihilationHybrid materialAcceptorMolecular physicsCatalysisPhoton upconversionChemistry – A European Journal
researchProduct

Triplet–Triplet Annihilation Upconversion in a MOF with Acceptor‐Filled Channels

2019

Abstract Photon upconversion has enjoyed increased interest in the last years due to its high potential for solar‐energy harvesting and bioimaging. A challenge for triplet–triplet annihilation upconversion (TTA‐UC) processes is to realize these features in solid materials without undesired phase segregation and detrimental dye aggregation. To achieve this, we combine a palladium porphyrin sensitizer and a 9,10‐diphenylanthracene annihilator within a crystalline mesoporous metal–organic framework using an inverted design. In this modular TTA system, the framework walls constitute the fixed sensitizer, while caprylic acid coats the channels providing a solventlike environment for the mobile a…

LuminescenceQuantum yieldengineering.material010402 general chemistryPhotochemistryporphyrins01 natural sciencesCatalysismetal–organic frameworksCoatinghybrid materialsupconversion010405 organic chemistryChemistryCommunicationOrganic ChemistryGeneral ChemistryAcceptorFluorescencePhoton upconversionCommunicationstriplet–triplet annihilation0104 chemical sciencesengineeringMetal-organic frameworkLuminescenceHybrid materialChemistry (Weinheim an Der Bergstrasse, Germany)
researchProduct