6533b834fe1ef96bd129cbb6

RESEARCH PRODUCT

Citric Acid Based Carbon Dots with Amine Type Stabilizers: pH-Specific Luminescence and Quantum Yield Characteristics

Tobias VossSiegfried R. WaldvogelFrank DissingerFlorian MeierhoferUte Resch-gengerFlorian WeigertJörgen JungclausKnut Müller-caspary

subject

chemistry.chemical_classificationPolyethylenimineChemistryLigandQuantum yieldchemistry.chemical_element02 engineering and technologyPolymer010402 general chemistry021001 nanoscience & nanotechnology01 natural sciences0104 chemical sciencesSurfaces Coatings and FilmsElectronic Optical and Magnetic Materialschemistry.chemical_compoundGeneral Energyddc:530Amine gas treatingPhysical and Theoretical Chemistry0210 nano-technologyLuminescenceCitric acidCarbonNuclear chemistry

description

We report the synthesis and spectroscopic characteristics of two different sets of carbon dots (CDs) formed by hydrothermal reaction between citric acid and polyethylenimine (PEI) or 2,3-diaminopyridine (DAP). Although the formation of amide-based species and the presence of citrazinic acid type derivates assumed to be responsible for a blue emission is confirmed for both CDs by elemental analysis, infrared spectroscopy, and mass spectrometry, a higher abundance of sp2-hybridized nitrogen is observed for DAP-based CDs, which causes a red-shift of the n-π* absorption band relative to the one of PEI-based CDs. These CD systems possess high photoluminescence quantum yields (QY) of ∼40% and ∼48% at neutral pH, demonstrating a possible tuning of the optical properties by the amine precursor. pH-Dependent spectroscopic studies revealed a drop in QY to < 9% (pH ∼ 1) and < 21% (pH ∼ 12) for both types of CDs under acidic and basic conditions. In contrast, significant differences in the pH-dependency of the n-π* transitions are found for both CD types which are ascribed to different (de)protonation sequences of the CD-specific fluorophores and functional groups using zeta potential analysis.

https://doi.org/10.1021/acs.jpcc.9b11732