0000000000802763
AUTHOR
J. J. Miret
Designing a photonic crystal fibre with flattened chromatic dispersion
Using a full-vector modal method, the authors have identified a region of nearly zero flattened chromatic dispersion in a specially designed photonic crystal fibre. The approach permits an accurate control of the dispersion features of these fibres in terms of their structural parameters.
Smooth and stable supercontinuum generation with standard photonic crystal fibers
We identify some simple-to-fabricate photonic crystal fibers, with only two families of air-hole sizes, which provide a wide, smooth and highly-coherent supercontinuum.
Designing the properties of dispersion-flattened photonic crystal fibers
We present a systematic study of group-velocity-dispersion properties in photonic crystal fibers (PCF's). This analysis includes a thorough description of the dependence of the fiber geometrical dispersion on the structural parameters of a PCF. The interplay between material dispersion and geometrical dispersion allows us to established a well-defined procedure to design specific predetermined dispersion profiles. We focus on flattened, or even ultraflattened, dispersion behaviors both in the telecommunication window (around 1.55 microm) and in the Ti-Za laser wavelength range (around 0.8 microm}. We show the different possibilities of obtaining normal, anomalous, and zero dispersion curves…
Dyakonov surface waves in lossy metamaterials
We analyze the existence of localized waves in the vicinities of the interface between two dielectrics, provided one of them is uniaxial and lossy. We found two families of surface waves, one of them approaching the well-known Dyakonov surface waves (DSWs). In addition, a new family of wave fields exists which are tightly bound to the interface. Although its appearance is clearly associated with the dissipative character of the anisotropic material, the characteristic propagation length of such surface waves might surpasses the working wavelength by nearly two orders of magnitude.
Nearly zero ultraflattened dispersion in photonic crystal fibers.
We present a procedure for achieving photonic crystal fibers with nearly zero ultraflattened group-velocity dispersion. Systematic knowledge of the special guiding properties of these fibers permits the achievement of qualitatively novel dispersion curves. Unlike the behavior of conventional fibers, this new type of dispersion behavior permits remarkably improved suppression of third-order dispersion, particularly in the low-dispersion domain.
Vector Description of a Realistic Photonic Crystal Fiber
Donor and acceptor guided modes in photonic crystal fibers.
We present a triangular photonic-crystal-fiber structure that exhibits guided modes simultaneously above and below the first conduction band. We achieve this configuration by decreasing the size of one of the airholes (the defect) in a specific triangular lattice. More generally, we analyze the behavior of guided modes that depends on the size of the defect. Defects generated by decreasing or increasing the size of one of the holes produce donor or acceptor guided modes, respectively, in analogy with impurity levels in solid-state crystals. We conclude that the guiding mechanism for both donor and acceptor modes is produced by a unique phenomenon of multiple interference by a periodic struc…