The Nitsche phenomenon for weighted Dirichlet energy
Abstract The present paper arose from recent studies of energy-minimal deformations of planar domains. We are concerned with the Dirichlet energy. In general the minimal mappings need not be homeomorphisms. In fact, a part of the domain near its boundary may collapse into the boundary of the target domain. In mathematical models of nonlinear elasticity this is interpreted as interpenetration of matter. We call such occurrence the Nitsche phenomenon, after Nitsche’s remarkable conjecture (now a theorem) about existence of harmonic homeomorphisms between annuli. Indeed the round annuli proved to be perfect choices to grasp the nuances of the problem. Several papers are devoted to a study of d…