0000000000804053
AUTHOR
Toni Heikkinen
Orlicz–Sobolev extensions and measure density condition
Abstract We study the extension properties of Orlicz–Sobolev functions both in Euclidean spaces and in metric measure spaces equipped with a doubling measure. We show that a set E ⊂ R satisfying a measure density condition admits a bounded linear extension operator from the trace space W 1 , Ψ ( R n ) | E to W 1 , Ψ ( R n ) . Then we show that a domain, in which the Sobolev embedding theorem or a Poincare-type inequality holds, satisfies the measure density condition. It follows that the existence of a bounded, possibly non-linear extension operator or even the surjectivity of the trace operator implies the measure density condition and hence the existence of a bounded linear extension oper…
Sobolev-type spaces from generalized Poincaré inequalities
We de ne a Sobolev space by means of a generalized Poincare inequality and relate it to a corresponding space based on upper gradients. 2000 Mathematics Subject Classi cation: Primary 46E35, Secondary 46E30, 26D10
Finitely randomized dyadic systems and BMO on metric measure spaces
Abstract We study the connection between BMO and dyadic BMO in metric measure spaces using finitely randomized dyadic systems, and give a Garnett–Jones type proof for a theorem of Uchiyama on a construction of certain BMO functions. We obtain a relation between the BMO norm of a suitable expectation over dyadic systems and the dyadic BMO norms of the original functions in different systems. The expectation is taken over only finitely randomized dyadic systems to overcome certain measurability questions. Applying our result, we derive Uchiyama’s theorem from its dyadic counterpart, which we also prove.
Smoothing properties of the discrete fractional maximal operator on Besov and Triebel-Lizorkin spaces
Motivated by the results of Korry, and Kinnunen and Saksman, we study the behaviour of the discrete fractional maximal operator on fractional Hajlasz spaces, Hajlasz-Besov, and Hajlasz-Triebel-Lizorkin spaces on metric measure spaces. We show that the discrete fractional maximal operator maps these spaces to the spaces of the same type with higher smoothness. Our results extend and unify aforementioned results. We present our results in a general setting, but they are new already in the Euclidean case.
Characterizations of Orlicz-Sobolev Spaces by Means of Generalized Orlicz-Poincaré Inequalities
Let Φ be anN-function. We show that a functionu∈LΦ(ℝn)belongs to the Orlicz-Sobolev spaceW1,Φ(ℝn)if and only if it satisfies the (generalized) Φ-Poincaré inequality. Under more restrictive assumptions on Φ, an analog of the result holds in a general metric measure space setting.
Self-improving properties of generalized Orlicz-Poincaré inequalities
Fractional Maximal Functions in Metric Measure Spaces
Abstract We study the mapping properties of fractional maximal operators in Sobolev and Campanato spaces in metric measure spaces. We show that, under certain restrictions on the underlying metric measure space, fractional maximal operators improve the Sobolev regularity of functions and map functions in Campanato spaces to Hölder continuous functions. We also give an example of a space where fractional maximal function of a Lipschitz function fails to be continuous.
Approximation and quasicontinuity of Besov and Triebel–Lizorkin functions
We show that, for $0<s<1$, $0<p<\infty$, $0<q<\infty$, Haj\l asz-Besov and Haj\l asz-Triebel-Lizorkin functions can be approximated in the norm by discrete median convolutions. This allows us to show that, for these functions, the limit of medians, \[ \lim_{r\to 0}m_u^\gamma(B(x,r))=u^*(x), \] exists quasieverywhere and defines a quasicontinuous representative of $u$. The above limit exists quasieverywhere also for Haj\l asz functions $u\in M^{s,p}$, $0<s\le 1$, $0<p<\infty$, but approximation of $u$ in $M^{s,p}$ by discrete (median) convolutions is not in general possible.