Dimension of self-affine sets for fixed translation vectors
An affine iterated function system is a finite collection of affine invertible contractions and the invariant set associated to the mappings is called self-affine. In 1988, Falconer proved that, for given matrices, the Hausdorff dimension of the self-affine set is the affinity dimension for Lebesgue almost every translation vectors. Similar statement was proven by Jordan, Pollicott, and Simon in 2007 for the dimension of self-affine measures. In this article, we have an orthogonal approach. We introduce a class of self-affine systems in which, given translation vectors, we get the same results for Lebesgue almost all matrices. The proofs rely on Ledrappier-Young theory that was recently ver…
Ledrappier-Young formula and exact dimensionality of self-affine measures
In this paper, we solve the long standing open problem on exact dimensionality of self-affine measures on the plane. We show that every self-affine measure on the plane is exact dimensional regardless of the choice of the defining iterated function system. In higher dimensions, under certain assumptions, we prove that self-affine and quasi self-affine measures are exact dimensional. In both cases, the measures satisfy the Ledrappier-Young formula. peerReviewed