Massless positivity in graviton exchange
We formulate Positivity Bounds for scattering amplitudes including exchange of massless particles. We generalize the standard construction through dispersion relations to include the presence of a branch cut along the real axis in the complex plane for the Maldestam variable $s$. In general, validity of these bounds require the cancellation of divergences in the forward limit of the amplitude, proportional to $t^{-1}$ and $\log(t)$. We show that this is possible in the case of gravitons if one assumes a Regge behavior of the amplitude at high energies below the Planck scale, as previously suggested in the literature, and that the concrete UV behaviour of the amplitude is uniquely determined…