0000000000807855

AUTHOR

Jarkko Peltomäki

0000-0003-3164-1559

showing 1 related works from this author

Abelian Powers and Repetitions in Sturmian Words

2016

Richomme, Saari and Zamboni (J. Lond. Math. Soc. 83: 79-95, 2011) proved that at every position of a Sturmian word starts an abelian power of exponent $k$ for every $k > 0$. We improve on this result by studying the maximum exponents of abelian powers and abelian repetitions (an abelian repetition is an analogue of a fractional power) in Sturmian words. We give a formula for computing the maximum exponent of an abelian power of abelian period $m$ starting at a given position in any Sturmian word of rotation angle $\alpha$. vAs an analogue of the critical exponent, we introduce the abelian critical exponent $A(s_\alpha)$ of a Sturmian word $s_\alpha$ of angle $\alpha$ as the quantity $A(s_\a…

FOS: Computer and information sciencesFibonacci numberGeneral Computer ScienceDiscrete Mathematics (cs.DM)Formal Languages and Automata Theory (cs.FL)[INFO.INFO-DS]Computer Science [cs]/Data Structures and Algorithms [cs.DS]Computer Science - Formal Languages and Automata Theory0102 computer and information sciences01 natural sciencesTheoretical Computer ScienceCombinatoricsFOS: MathematicsMathematics - Combinatorics[INFO]Computer Science [cs]Number Theory (math.NT)0101 mathematicsAbelian groupContinued fractionFibonacci wordComputingMilieux_MISCELLANEOUSQuotientMathematicsMathematics - Number Theoryta111010102 general mathematicsComputer Science (all)Sturmian wordSturmian wordAbelian period; Abelian power; Critical exponent; Lagrange constant; Sturmian word; Theoretical Computer Science; Computer Science (all)Abelian periodLagrange constantCritical exponentAbelian power010201 computation theory & mathematicsBounded functionExponentCombinatorics (math.CO)Computer Science::Formal Languages and Automata TheoryComputer Science - Discrete Mathematics
researchProduct