0000000000808215

AUTHOR

Peizhe Tang

0000-0002-6345-5809

showing 3 related works from this author

Light-induced anomalous Hall effect in massless Dirac fermion systems and topological insulators with dissipation

2019

Employing the quantum Liouville equation with phenomenological dissipation, we investigate the transport properties of massless and massive Dirac fermion systems that mimics graphene and topological insulators, respectively. The massless Dirac fermion system does not show an intrinsic Hall effect, but it shows a Hall current under the presence of circularly-polarized laser fields as a nature of a optically-driven nonequilibrium state. Based on the microscopic analysis, we find that the light-induced Hall effect mainly originates from the imbalance of photocarrier distribution in momentum space although the emergent Floquet–Berry curvature also has a non-zero contribution. We further compute…

PopulationFOS: Physical sciencesGeneral Physics and AstronomyPosition and momentum spaceanomalous Hall effect01 natural sciencesSettore FIS/03 - Fisica Della Materia010305 fluids & plasmaslaw.inventionsymbols.namesakeHall effectlawMesoscale and Nanoscale Physics (cond-mat.mes-hall)0103 physical sciences010306 general physicseducationQuantumPhysicseducation.field_of_studyCondensed Matter - Mesoscale and Nanoscale PhysicsCondensed matter physicsGrapheneFloquet statesopen quantum systemsMassless particleDirac fermionTopological insulatorsymbolsPhysics - OpticsOptics (physics.optics)
researchProduct

Microscopic theory for the light-induced anomalous Hall effect in graphene

2019

We employ a quantum Liouville equation with relaxation to model the recently observed anomalous Hall effect in graphene irradiated by an ultrafast pulse of circularly polarized light. In the weak-field regime, we demonstrate that the Hall effect originates from an asymmetric population of photocarriers in the Dirac bands. By contrast, in the strong-field regime, the system is driven into a non-equilibrium steady state that is well-described by topologically non-trivial Floquet-Bloch bands. Here, the anomalous Hall current originates from the combination of a population imbalance in these dressed bands together with a smaller anomalous velocity contribution arising from their Berry curvature…

Dirac (software)PopulationFOS: Physical sciences02 engineering and technology01 natural sciencesSettore FIS/03 - Fisica Della Materialaw.inventionlawHall effect0103 physical sciencesMesoscale and Nanoscale Physics (cond-mat.mes-hall)010306 general physicseducationQuantumPhysicseducation.field_of_studyCondensed Matter - Mesoscale and Nanoscale PhysicsCondensed matter physicsGrapheneRelaxation (NMR)dissipation021001 nanoscience & nanotechnologyCondensed Matter::Mesoscopic Systems and Quantum Hall EffectFloquet topologyBerry connection and curvatureMicroscopic theory0210 nano-technologyPhysics - OpticsOptics (physics.optics)Physical Review B
researchProduct

Floquet engineering of magnetism in topological insulator thin films

2023

Dynamic manipulation of magnetism in topological materials is demonstrated here via a Floquet engineering approach using circularly polarized light. Increasing the strength of the laser field, besides the expected topological phase transition, the magnetically doped topological insulator thin film also undergoes a magnetic phase transition from ferromagnetism to paramagnetism, whose critical behavior strongly depends on the quantum quenching. In sharp contrast to the equilibrium case, the non-equilibrium Curie temperatures vary for different time scale and experimental setup, not all relying on change of topology. Our discoveries deepen the understanding of the relationship between topology…

Condensed Matter - Materials ScienceFloquet theoryCondensed Matter - Mesoscale and Nanoscale PhysicsMaterials Science (cond-mat.mtrl-sci)FOS: Physical sciencesCondensed Matter PhysicsSettore FIS/03 - Fisica Della MateriaElectronic Optical and Magnetic MaterialsCondensed Matter::Materials ScienceMesoscale and Nanoscale Physics (cond-mat.mes-hall)ElectrochemistryMaterials ChemistryElectrical and Electronic Engineeringmagnetically doped topological insulator thin film
researchProduct