0000000000809435

AUTHOR

Antonino La Magna

showing 7 related works from this author

Substrate and atmosphere influence on oxygen p-doped graphene

2016

Abstract The mechanisms responsible for p-type doping of substrate supported monolayer graphene (Gr) by thermal treatments in oxygen ambient have been investigated by micro-Raman spectroscopy, atomic force microscopy (AFM) and X-ray Photoelectron Spectroscopy (XPS), considering commonly employed dielectric substrates, such as SiO 2 and Al 2 O 3 thin films grown on Si. While a high p-type doping (∼10 13  cm −2 ) is observed for Gr on SiO 2 , no significant doping is found for Gr samples on the Al 2 O 3 substrate, suggesting a key role of the Gr/SiO 2 interface states in the trapping of oxygen responsible for the Gr p-type doping. Furthermore, we investigated the doping stability of Gr on SiO…

Materials sciencegenetic structuresSettore FIS/01 - Fisica SperimentaleDopingAnalytical chemistrychemistry.chemical_element02 engineering and technologyGeneral ChemistrySubstrate (electronics)Dielectric010402 general chemistry021001 nanoscience & nanotechnology01 natural sciencesNitrogenOxygenGraphene doping substrate effects thermal effects Raman Spectroscopy0104 chemical sciencesp-type doped grapheneX-ray photoelectron spectroscopychemistryoxygen annealingGeneral Materials ScienceThin film0210 nano-technologySpectroscopyCarbon
researchProduct

Theoretical and experimental study of the role of cell-cell dipole interaction in dielectrophoretic devices: application to polynomial electrodes

2013

BACKGROUND: We aimed to investigate the effect of cell-cell dipole interactions in the equilibrium distributions in dielectrophoretic devices. METHODS: We used a three dimensional coupled Monte Carlo-Poisson method to theoretically study the final distribution of a system of uncharged polarizable particles suspended in a static liquid medium under the action of an oscillating non-uniform electric field generated by polynomial electrodes. The simulated distributions have been compared with experimental ones observed in the case of MDA-MB-231 cells in the same operating conditions. RESULTS: The real and simulated distributions are consistent. In both cases the cells distribution near the elec…

ElectrophoresisPolynomialMonte Carlo methodBiomedical EngineeringCell Communication-cell-cell dipoleMolecular physicsQuantitative Biology::Cell BehaviorBiomaterialsPolarizabilityCell Line TumorElectric fieldElectric ImpedanceElectronic engineeringHumansRadiology Nuclear Medicine and imagingPoisson DistributionElectrodesPhysicsRadiological and Ultrasound TechnologyResearchGeneral MedicineDipoleElectrophoresisDistribution (mathematics)ElectrodeMonte Carlo MethodAlgorithmsBioMedical Engineering OnLine
researchProduct

In-situ monitoring by Raman spectroscopy of the thermal doping of graphene and MoS2 in O-2-controlled atmosphere

2017

The effects of temperature and atmosphere (air and O2) on the doping of monolayers of graphene (Gr) on SiO2 and Si substrates, and on the doping of MoS2 multilayer flakes transferred on the same substrates have been investigated. The investigations were carried out by in situ micro-Raman spectroscopy during thermal treatments up to 430 °C, and by atomic force microscopy (AFM). The spectral positions of the G and 2D Raman bands of Gr undergo only minor changes during treatment, while their amplitude and full width at half maximum (FWHM) vary as a function of the temperature and the used atmosphere. The thermal treatments in oxygen atmosphere show, in addition to a thermal effect, an effect a…

Controlled atmosphereMaterials science2Analytical chemistrythermal dopingGeneral Physics and Astronomychemistry.chemical_elementtwo-dimensional (2D) materials02 engineering and technologyMoSlcsh:Chemical technology010402 general chemistrylcsh:Technology01 natural sciencesOxygenFull Research Paperlaw.inventionPhysics and Astronomy (all)symbols.namesakelawMonolayerNanotechnologylcsh:TP1-1185General Materials ScienceElectrical and Electronic Engineeringlcsh:ScienceSpectroscopylcsh:TGrapheneSettore FIS/01 - Fisica SperimentaleDopinggraphenetechnology industry and agriculture021001 nanoscience & nanotechnologylcsh:QC1-9990104 chemical sciencesNanoscienceFull width at half maximumTwo-dimensional (2D) materialchemistryRaman spectroscopysymbolslcsh:QMaterials Science (all)0210 nano-technologyRaman spectroscopyMoS2lcsh:Physics
researchProduct

Seed‐Layer‐Free Atomic Layer Deposition of Highly Uniform Al 2 O 3 Thin Films onto Monolayer Epitaxial Graphene on Silicon Carbide

2019

Atomic layer deposition (ALD) is the method of choice to obtain uniform insulating films on graphene for device applications. Owing to the lack of out-of-plane bonds in the sp(2) lattice of graphene, nucleation of ALD layers is typically promoted by functionalization treatments or predeposition of a seed layer, which, in turn, can adversely affect graphene electrical properties. Hence, ALD of dielectrics on graphene without prefunctionalization and seed layers would be highly desirable. In this work, uniform Al2O3 films are obtained by seed-layer-free thermal ALD at 250 degrees C on highly homogeneous monolayer (1L) epitaxial graphene (EG) (amp;gt;98% 1L coverage) grown on on-axis 4H-SiC(00…

SiCMaterials sciencePhysics::Opticslaw.inventionchemistry.chemical_compoundAtomic layer depositionlawLattice (order)MonolayerPhysics::Atomic and Molecular ClustersSilicon carbidePhysics::Chemical PhysicsThin filmCondensed Matter::Quantum Gasesatomic force microscopybusiness.industryAtomic force microscopyGrapheneMechanical EngineeringCondensed Matter Physicsepitaxial graphenechemistryMechanics of Materialsatomic layer depositionOptoelectronicsatomic force microscopy; atomic layer deposition; epitaxial graphene; SiCEpitaxial graphenebusinessDen kondenserade materiens fysikAdvanced Materials Interfaces
researchProduct

Ambipolar MoS2 Transistors by Nanoscale Tailoring of Schottky Barrier Using Oxygen Plasma Functionalization

2017

One of the main challenges to exploit molybdenum disulfide (MoS2) potentialities for the next-generation complementary metal oxide semiconductor (CMOS) technology is the realization of p-type or ambipolar field-effect transistors (FETs). Hole transport in MoS2 FETs is typically hampered by the high Schottky barrier height (SBH) for holes at source/drain contacts, due to the Fermi level pinning close to the conduction band. In this work, we show that the SBH of multilayer MoS2 surface can be tailored at nanoscale using soft O-2 plasma treatments. The morphological, chemical, and electrical modifications of MoS2 surface under different plasma conditions were investigated by several microscopi…

Materials scienceambipolar transistorsSchottky barrierDFT calculationNanotechnology02 engineering and technologyDFT calculations01 natural scienceschemistry.chemical_compoundX-ray photoelectron spectroscopy0103 physical sciencesScanning transmission electron microscopyGeneral Materials ScienceSchottky barrierMolybdenum disulfide010302 applied physicsAmbipolar diffusionElectron energy loss spectroscopyConductive atomic force microscopy021001 nanoscience & nanotechnologyconductive atomic force microscopyatomic resolution STEMchemistryambipolar transistorSurface modificationMaterials Science (all)0210 nano-technologyMoS2
researchProduct

Interfacial disorder of graphene grown at high temperatures on 4H-SiC(000-1)

2016

This paper presents an investigation of the morphological and structural properties of graphene (Gr) grown on SiC(000-1) by thermal treatments at high temperatures (from 1850 to 1950 °C) in Ar at atmospheric pressure. Atomic force microscopy and micro-Raman spectroscopy showed that the grown Gr films are laterally inhomogeneous in the number of layers, and that regions with different stacking-type (coupled or decoupled Gr films) can coexist in the same sample. Scanning transmission electron microscopy and electron energy loss spectroscopy shoed that a nm-thick C-Si-O amorphous layer is present at the interface between Gr and SiC. Basing on these structural results, the mechanisms of Gr grow…

Materials scienceAnnealing (metallurgy)GrapheneMechanical EngineeringElectron energy loss spectroscopyAnalytical chemistrySTEMCondensed Matter PhysicsEpitaxylaw.inventionAmorphous solidInterfacial disordersymbols.namesakeMechanics of MaterialslawScanning transmission electron microscopysymbolsGeneral Materials ScienceAFMGrapheneSpectroscopyRaman spectroscopyC faceRaman
researchProduct

Effect of air on oxygen p-doped graphene on SiO2

2016

Stability in ambient air or in vacuum-controlled atmosphere of molecular oxygen-induced p-type doping of graphene monolayer on SiO2 substrate on Si is investigated by micro-Raman spectroscopy and atomic force microscopy (AFM). The Raman 2D and G bands spectral positions and amplitude ratio are affected by the permanence in air atmosphere in a time scale of months whereas the vacuum safely maintains the doping effects determined through Raman bands. No morphological effects are induced by the doping and post-doping treatments. A reactivity of ambient molecular gas with stably trapped oxygen is suggested to induce the doping modification. (C) 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

inorganic chemicalsMaterials Chemistry2506 Metals and AlloyElectronic Optical and Magnetic MaterialSettore FIS/01 - Fisica Sperimentaletechnology industry and agricultureSurfaces Coatings and FilmCondensed Matter Physicgraphene dopingCondensed Matter::Materials ScienceCondensed Matter::Strongly Correlated ElectronsSiAFMSiO2Electrical and Electronic Engineeringhuman activitiesRamanSurfaces and Interface
researchProduct