0000000000809648

AUTHOR

C. Rehn

Molecular modeling of intercalation complexes of antitumor active 9-aminoacridine and a [d, e]-anellated isoquinoline derivative with base paired deoxytetranucleotides

Intercalators are molecules capable of sliding between DNA base pairs without breaking up the hydrogen bonds between the DNA bases. On the basis of molecular mechanics calculations structural, models of B-DNA tetranucleotide intercalation complexes of some cytostatic active 9-aminoacridines and of a [d, e]-anellated isoquinoline derivative are presented. The drug complexes are stabilized by energetically favouredvan der Waals interactions and by selective hydrogen bonds between the side chains of the drugs and the DNA bases. Semiempirical quantum chemistry calculations revealed that the chromophoric system of the intercalators is able to form π,π-charge-transfer interactions with the purine…

research product

Model building and molecular mechanics calculations of mitoxantrone-deoxytetranucleotide complexes: Molecular foundations of DNA intercalation as cytostatic active principle

Several intercalation complexes of the antitumor-active drug mitoxantrone with base paired tetranucleotides were constructed by molecular modeling using computer graphics and molecular mechanics calculations. The mitoxantrone molecule favours DNA binding into CG intercalation site. The two side chains of the drug are orientated into the major groove and fixed by hydrogen bonds with the nucleotide bases. This molecular study can be helpful for understanding the mode of action of cytostatically active compounds and to design new structurally related compounds of the anthraquinone drug type.

research product