Generalized Riesz systems and orthonormal sequences in Krein spaces
We analyze special classes of bi-orthogonal sets of vectors in Hilbert and in Krein spaces, and their relations with generalized Riesz systems. In this way, the notion of the first/second type sequences is introduced and studied. We also discuss their relevance in some concrete quantum mechanical system driven by manifestly non self-adjoint Hamiltonians.
Hamiltonians Generated by Parseval Frames
AbstractIt is known that self-adjoint Hamiltonians with purely discrete eigenvalues can be written as (infinite) linear combination of mutually orthogonal projectors with eigenvalues as coefficients of the expansion. The projectors are defined by the eigenvectors of the Hamiltonians. In some recent papers, this expansion has been extended to the case in which these eigenvectors form a Riesz basis or, more recently, a ${\mathcal{D}}$ D -quasi basis (Bagarello and Bellomonte in J. Phys. A 50:145203, 2017, Bagarello et al. in J. Math. Phys. 59:033506, 2018), rather than an orthonormal basis. Here we discuss what can be done when these sets are replaced by Parseval frames. This interest is moti…