0000000000811329
AUTHOR
I. Helenius
Predictions for Cold Nuclear Matter Effects in $p+$Pb Collisions at $\sqrt{s_{_{NN}}} = 8.16$ TeV
Predictions for cold nuclear matter effects on charged hadrons, identified light hadrons, quarkonium and heavy flavor hadrons, Drell-Yan dileptons, jets, photons, gauge bosons and top quarks produced in $p+$Pb collisions at $\sqrt{s_{_{NN}}} = 8.16$ TeV are compiled and, where possible, compared to each other. Predictions of the normalized ratios of $p+$Pb to $p+p$ cross sections are also presented for most of the observables, providing new insights into the expected role of cold nuclear matter effects. In particular, the role of nuclear parton distribution functions on particle production can now be probed over a wider range of phase space than ever before.
The Large Hadron–Electron Collider at the HL-LHC
The Large Hadron-Electron Collider (LHeC) is designed to move the field of deep inelastic scattering (DIS) to the energy and intensity frontier of particle physics. Exploiting energy-recovery technology, it collides a novel, intense electron beam with a proton or ion beam from the High-Luminosity Large Hadron Collider (HL-LHC). The accelerator and interaction region are designed for concurrent electron-proton and proton-proton operations. This report represents an update to the LHeC's conceptual design report (CDR), published in 2012. It comprises new results on the parton structure of the proton and heavier nuclei, QCD dynamics, and electroweak and top-quark physics. It is shown how the LH…