0000000000811460

AUTHOR

S. Alekhin

The Large Hadron–Electron Collider at the HL-LHC

The Large Hadron-Electron Collider (LHeC) is designed to move the field of deep inelastic scattering (DIS) to the energy and intensity frontier of particle physics. Exploiting energy-recovery technology, it collides a novel, intense electron beam with a proton or ion beam from the High-Luminosity Large Hadron Collider (HL-LHC). The accelerator and interaction region are designed for concurrent electron-proton and proton-proton operations. This report represents an update to the LHeC's conceptual design report (CDR), published in 2012. It comprises new results on the parton structure of the proton and heavier nuclei, QCD dynamics, and electroweak and top-quark physics. It is shown how the LH…

research product

A study of quasi-elastic muon neutrino and antineutrino scattering in the NOMAD experiment

We have studied the muon neutrino and antineutrino quasi-elastic (QEL) scattering reactions ($\nu_\mu n\to \mu^- p$ and $\bar{\nu}_\mu p\to \mu^+ n$) using a set of experimental data collected by the NOMAD collaboration. We have performed measurements of the cross-section of these processes on a nuclear target (mainly Carbon) normalizing it to the total $\nu_\mu$ ($\bar{\nu}_\mu$) charged current cross-section. The results for the flux averaged QEL cross-sections in the (anti)neutrino energy interval 3-100 GeV are $\sigma^{qel}_{\nu_\mu} = (0.92 \pm 0.02 (stat) \pm 0.06 (syst))\times 10^{-38} \cm^2$ and $\sigma{qel}_{\bar{\nu}_\mu} = (0.81 \pm 0.05 (stat) \pm 0.08 (syst))\times 10^{-38} \cm…

research product