Heavy-tailed targets and (ab)normal asymptotics in diffusive motion
We investigate temporal behavior of probability density functions (pdfs) of paradigmatic jump-type and continuous processes that, under confining regimes, share common heavy-tailed asymptotic (target) pdfs. Namely, we have shown that under suitable confinement conditions, the ordinary Fokker-Planck equation may generate non-Gaussian heavy-tailed pdfs (like e.g. Cauchy or more general L\'evy stable distribution) in its long time asymptotics. For diffusion-type processes, our main focus is on their transient regimes and specifically the crossover features, when initially infinite number of the pdf moments drops down to a few or none at all. The time-dependence of the variance (if in existence…