0000000000812019

AUTHOR

J. M. Warzecha

showing 1 related works from this author

Differential algebras in non-commutative geometry

1993

We discuss the differential algebras used in Connes' approach to Yang-Mills theories with spontaneous symmetry breaking. These differential algebras generated by algebras of the form functions $\otimes$ matrix are shown to be skew tensorproducts of differential forms with a specific matrix algebra. For that we derive a general formula for differential algebras based on tensor products of algebras. The result is used to characterize differential algebras which appear in models with one symmetry breaking scale.

High Energy Physics - TheoryPhysicsPure mathematicsDifferential formSpontaneous symmetry breakingFOS: Physical sciencesGeneral Physics and AstronomyOf the formMatrix (mathematics)Tensor productHigh Energy Physics - Theory (hep-th)Mathematics - Quantum AlgebraFOS: MathematicsQuantum Algebra (math.QA)Differential algebraGeometry and TopologySymmetry breakingCommutative propertyMathematical PhysicsJournal of Geometry and Physics
researchProduct