A non-linear Ritz method for progressive failure analysis of variable angle tow composite laminates
A Ritz formulation for non-linear analysis of damage initiation and evolution in variable angle tow composite plates under progressive loading is presented. The model is built on a few key items. It assumes first order shear deformation theory kinematics and non-liner strains in the von Karman sense. The constitutive relationships are formulated in the framework of continuum damage mechanics at the ply level, so that each laminate layer can experience in-plane damage initiation and evolution, then reflected in material softening and loss of local stiffness. A Ritz polynomial expansion of the primary variables and the minimization of the total potential energy provide the discrete solution e…
Ritz Model for Damage Analysis in Variable Angle Tow Composite Plates
In this work, a Ritz method is developed for progressive damage analysis of multilayered variable angle tow (VAT) composite plates under geometrically non-linear strains. The proposed model adopts a first order shear deformation theory and considers geometric non-linearities through the von Karman assumptions. A meso-modelling approach based on Continuum Damage Mechanics is adopted for analysing the initiation and evolution of damage. The onset of damage is predicted using the Hashin’s criteria. Four damage indices are defined and computed for expressing the degradation of the mechanical properties of the material, both for fibers and matrix under either tension and compression loading. A s…